PhysLean/HepLean/PerturbationTheory/WickContraction/SubContraction.lean

202 lines
8.2 KiB
Text
Raw Normal View History

2025-01-31 16:02:02 +00:00
/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.WickContraction.TimeContract
import HepLean.PerturbationTheory.WickContraction.StaticContract
2025-02-03 12:12:36 +00:00
import HepLean.PerturbationTheory.FieldOpAlgebra.TimeContraction
2025-01-31 16:02:02 +00:00
/-!
2025-02-03 06:13:13 +00:00
# Sub contractions
2025-01-31 16:02:02 +00:00
-/
open FieldSpecification
variable {𝓕 : FieldSpecification}
namespace WickContraction
2025-02-03 11:28:14 +00:00
variable {n : } {φs : List 𝓕.FieldOp} {φsΛ : WickContraction φs.length}
2025-01-31 16:02:02 +00:00
open HepLean.List
open FieldOpAlgebra
2025-02-03 06:13:13 +00:00
/-- Given a Wick contraction `φsΛ`, and a subset of `φsΛ.1`, the Wick contraction
conisting of contracted pairs within that subset. -/
def subContraction (S : Finset (Finset (Fin φs.length))) (ha : S ⊆ φsΛ.1) :
WickContraction φs.length :=
2025-01-31 16:02:02 +00:00
⟨S, by
intro i hi
exact φsΛ.2.1 i (ha hi),
by
intro i hi j hj
exact φsΛ.2.2 i (ha hi) j (ha hj)⟩
lemma mem_of_mem_subContraction {S : Finset (Finset (Fin φs.length))} {hs : S ⊆ φsΛ.1}
{a : Finset (Fin φs.length)} (ha : a ∈ (φsΛ.subContraction S hs).1) : a ∈ φsΛ.1 := by
exact hs ha
2025-02-03 06:13:13 +00:00
/-- Given a Wick contraction `φsΛ`, and a subset `S` of `φsΛ.1`, the Wick contraction
on the uncontracted list `[φsΛ.subContraction S ha]ᵘᶜ`
consisting of the remaining contracted pairs of `φsΛ` not in `S`. -/
2025-01-31 16:02:02 +00:00
def quotContraction (S : Finset (Finset (Fin φs.length))) (ha : S ⊆ φsΛ.1) :
WickContraction [φsΛ.subContraction S ha]ᵘᶜ.length :=
⟨Finset.filter (fun a => Finset.map uncontractedListEmd a ∈ φsΛ.1) Finset.univ,
by
intro a ha'
2025-02-03 05:39:48 +00:00
simp only [Finset.mem_filter, Finset.mem_univ, true_and] at ha'
2025-02-03 06:13:13 +00:00
simpa using φsΛ.2.1 (Finset.map uncontractedListEmd a) ha', by
2025-01-31 16:02:02 +00:00
intro a ha b hb
2025-02-03 05:39:48 +00:00
simp only [Finset.mem_filter, Finset.mem_univ, true_and] at ha hb
2025-01-31 16:02:02 +00:00
by_cases hab : a = b
· simp [hab]
2025-02-03 05:39:48 +00:00
· simp only [hab, false_or]
2025-01-31 16:02:02 +00:00
have hx := φsΛ.2.2 (Finset.map uncontractedListEmd a) ha (Finset.map uncontractedListEmd b) hb
simp_all⟩
lemma mem_of_mem_quotContraction {S : Finset (Finset (Fin φs.length))} {hs : S ⊆ φsΛ.1}
{a : Finset (Fin [φsΛ.subContraction S hs]ᵘᶜ.length)}
(ha : a ∈ (quotContraction S hs).1) : Finset.map uncontractedListEmd a ∈ φsΛ.1 := by
2025-02-03 05:39:48 +00:00
simp only [quotContraction, Finset.mem_filter, Finset.mem_univ, true_and] at ha
2025-01-31 16:02:02 +00:00
exact ha
lemma mem_subContraction_or_quotContraction {S : Finset (Finset (Fin φs.length))} {hs : S ⊆ φsΛ.1}
{a : Finset (Fin φs.length)} (ha : a ∈ φsΛ.1) :
a ∈ (φsΛ.subContraction S hs).1
∃ a', Finset.map uncontractedListEmd a' = a ∧ a' ∈ (quotContraction S hs).1 := by
by_cases h1 : a ∈ (φsΛ.subContraction S hs).1
· simp [h1]
2025-02-03 05:39:48 +00:00
simp only [h1, false_or]
simp only [subContraction] at h1
2025-01-31 16:02:02 +00:00
have h2 := φsΛ.2.1 a ha
rw [@Finset.card_eq_two] at h2
obtain ⟨i, j, hij, rfl⟩ := h2
have hi : i ∈ (φsΛ.subContraction S hs).uncontracted := by
rw [mem_uncontracted_iff_not_contracted]
intro p hp
have hp' : p ∈ φsΛ.1 := hs hp
have hp2 := φsΛ.2.2 p hp' {i, j} ha
2025-02-03 05:39:48 +00:00
simp only [subContraction] at hp
2025-01-31 16:02:02 +00:00
rcases hp2 with hp2 | hp2
· simp_all
2025-02-03 05:39:48 +00:00
simp only [Finset.disjoint_insert_right, Finset.disjoint_singleton_right] at hp2
2025-01-31 16:02:02 +00:00
exact hp2.1
have hj : j ∈ (φsΛ.subContraction S hs).uncontracted := by
rw [mem_uncontracted_iff_not_contracted]
intro p hp
have hp' : p ∈ φsΛ.1 := hs hp
have hp2 := φsΛ.2.2 p hp' {i, j} ha
2025-02-03 05:39:48 +00:00
simp only [subContraction] at hp
2025-01-31 16:02:02 +00:00
rcases hp2 with hp2 | hp2
· simp_all
2025-02-03 05:39:48 +00:00
simp only [Finset.disjoint_insert_right, Finset.disjoint_singleton_right] at hp2
2025-01-31 16:02:02 +00:00
exact hp2.2
obtain ⟨i, rfl⟩ := uncontractedListEmd_surjective_mem_uncontracted i hi
obtain ⟨j, rfl⟩ := uncontractedListEmd_surjective_mem_uncontracted j hj
use {i, j}
2025-02-03 05:39:48 +00:00
simp only [Finset.map_insert, Finset.map_singleton, quotContraction, Finset.mem_filter,
Finset.mem_univ, true_and]
2025-01-31 16:02:02 +00:00
exact ha
@[simp]
lemma subContraction_uncontractedList_get {S : Finset (Finset (Fin φs.length))} {hs : S ⊆ φsΛ.1}
{a : Fin [subContraction S hs]ᵘᶜ.length} :
[subContraction S hs]ᵘᶜ[a] = φs[uncontractedListEmd a] := by
erw [← getElem_uncontractedListEmd]
rfl
2025-02-01 11:51:06 +00:00
@[simp]
lemma subContraction_fstFieldOfContract {S : Finset (Finset (Fin φs.length))} {hs : S ⊆ φsΛ.1}
(a : (subContraction S hs).1) :
(subContraction S hs).fstFieldOfContract a =
φsΛ.fstFieldOfContract ⟨a.1, mem_of_mem_subContraction a.2⟩:= by
2025-02-03 06:13:13 +00:00
apply eq_fstFieldOfContract_of_mem _ _ _
(φsΛ.sndFieldOfContract ⟨a.1, mem_of_mem_subContraction a.2⟩)
· have ha := finset_eq_fstFieldOfContract_sndFieldOfContract _
⟨a.1, mem_of_mem_subContraction a.2⟩
2025-02-03 05:39:48 +00:00
simp only at ha
2025-02-01 11:51:06 +00:00
conv_lhs =>
rw [ha]
simp
2025-02-03 06:13:13 +00:00
· have ha := finset_eq_fstFieldOfContract_sndFieldOfContract _
⟨a.1, mem_of_mem_subContraction a.2⟩
2025-02-03 05:39:48 +00:00
simp only at ha
2025-02-01 11:51:06 +00:00
conv_lhs =>
rw [ha]
simp
· exact fstFieldOfContract_lt_sndFieldOfContract φsΛ ⟨↑a, mem_of_mem_subContraction a.property⟩
@[simp]
lemma subContraction_sndFieldOfContract {S : Finset (Finset (Fin φs.length))} {hs : S ⊆ φsΛ.1}
(a : (subContraction S hs).1) :
(subContraction S hs).sndFieldOfContract a =
φsΛ.sndFieldOfContract ⟨a.1, mem_of_mem_subContraction a.2⟩:= by
2025-02-03 06:13:13 +00:00
apply eq_sndFieldOfContract_of_mem _ _
(φsΛ.fstFieldOfContract ⟨a.1, mem_of_mem_subContraction a.2⟩)
· have ha := finset_eq_fstFieldOfContract_sndFieldOfContract _
⟨a.1, mem_of_mem_subContraction a.2⟩
2025-02-03 05:39:48 +00:00
simp only at ha
2025-02-01 11:51:06 +00:00
conv_lhs =>
rw [ha]
simp
2025-02-03 06:13:13 +00:00
· have ha := finset_eq_fstFieldOfContract_sndFieldOfContract _
⟨a.1, mem_of_mem_subContraction a.2⟩
2025-02-03 05:39:48 +00:00
simp only at ha
2025-02-01 11:51:06 +00:00
conv_lhs =>
rw [ha]
simp
· exact fstFieldOfContract_lt_sndFieldOfContract φsΛ ⟨↑a, mem_of_mem_subContraction a.property⟩
2025-01-31 16:02:02 +00:00
@[simp]
lemma quotContraction_fstFieldOfContract_uncontractedListEmd {S : Finset (Finset (Fin φs.length))}
{hs : S ⊆ φsΛ.1} (a : (quotContraction S hs).1) :
uncontractedListEmd ((quotContraction S hs).fstFieldOfContract a) =
2025-02-03 06:13:13 +00:00
(φsΛ.fstFieldOfContract
⟨Finset.map uncontractedListEmd a.1, mem_of_mem_quotContraction a.2⟩) := by
2025-01-31 16:02:02 +00:00
symm
2025-02-03 06:13:13 +00:00
apply eq_fstFieldOfContract_of_mem _ _ _
(uncontractedListEmd ((quotContraction S hs).sndFieldOfContract a))
2025-01-31 16:02:02 +00:00
· simp only [Finset.mem_map', fstFieldOfContract_mem]
· simp
· apply uncontractedListEmd_strictMono
exact fstFieldOfContract_lt_sndFieldOfContract (quotContraction S hs) a
@[simp]
lemma quotContraction_sndFieldOfContract_uncontractedListEmd {S : Finset (Finset (Fin φs.length))}
{hs : S ⊆ φsΛ.1} (a : (quotContraction S hs).1) :
uncontractedListEmd ((quotContraction S hs).sndFieldOfContract a) =
2025-02-03 06:13:13 +00:00
(φsΛ.sndFieldOfContract
⟨Finset.map uncontractedListEmd a.1, mem_of_mem_quotContraction a.2⟩) := by
2025-01-31 16:02:02 +00:00
symm
2025-02-03 06:13:13 +00:00
apply eq_sndFieldOfContract_of_mem _ _
(uncontractedListEmd ((quotContraction S hs).fstFieldOfContract a))
2025-01-31 16:02:02 +00:00
· simp only [Finset.mem_map', fstFieldOfContract_mem]
· simp
· apply uncontractedListEmd_strictMono
exact fstFieldOfContract_lt_sndFieldOfContract (quotContraction S hs) a
lemma quotContraction_gradingCompliant {S : Finset (Finset (Fin φs.length))} {hs : S ⊆ φsΛ.1}
(hsΛ : φsΛ.GradingCompliant) :
GradingCompliant [φsΛ.subContraction S hs]ᵘᶜ (quotContraction S hs) := by
2025-02-03 05:39:48 +00:00
simp only [GradingCompliant, Fin.getElem_fin, Subtype.forall]
2025-01-31 16:02:02 +00:00
intro a ha
erw [subContraction_uncontractedList_get]
erw [subContraction_uncontractedList_get]
2025-02-03 05:39:48 +00:00
simp only [quotContraction_fstFieldOfContract_uncontractedListEmd, Fin.getElem_fin,
quotContraction_sndFieldOfContract_uncontractedListEmd]
2025-01-31 16:02:02 +00:00
apply hsΛ
2025-02-01 11:51:06 +00:00
lemma mem_quotContraction_iff {S : Finset (Finset (Fin φs.length))} {hs : S ⊆ φsΛ.1}
{a : Finset (Fin [φsΛ.subContraction S hs]ᵘᶜ.length)} :
2025-02-03 06:13:13 +00:00
a ∈ (quotContraction S hs).1 ↔ a.map uncontractedListEmd ∈ φsΛ.1
2025-02-01 11:51:06 +00:00
∧ a.map uncontractedListEmd ∉ (subContraction S hs).1 := by
apply Iff.intro
· intro h
apply And.intro
· exact mem_of_mem_quotContraction h
· exact uncontractedListEmd_finset_not_mem _
· intro h
have h2 := mem_subContraction_or_quotContraction (S := S) (hs := hs) h.1
simp_all
2025-01-31 16:02:02 +00:00
end WickContraction