2025-01-20 15:17:48 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
Authors: Joseph Tooby-Smith
|
|
|
|
|
-/
|
2025-02-03 10:47:18 +00:00
|
|
|
|
import HepLean.PerturbationTheory.WickContraction.Sign.Basic
|
2025-02-03 12:12:36 +00:00
|
|
|
|
import HepLean.PerturbationTheory.FieldOpAlgebra.TimeContraction
|
2025-01-20 15:17:48 +00:00
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
# Time contractions
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
2025-01-21 06:11:47 +00:00
|
|
|
|
open FieldSpecification
|
|
|
|
|
variable {𝓕 : FieldSpecification}
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
|
|
|
|
namespace WickContraction
|
|
|
|
|
variable {n : ℕ} (c : WickContraction n)
|
|
|
|
|
open HepLean.List
|
2025-01-30 11:00:25 +00:00
|
|
|
|
open FieldOpAlgebra
|
2025-01-24 11:09:25 +00:00
|
|
|
|
/-- Given a Wick contraction `φsΛ` associated with a list `φs`, the
|
2025-01-20 15:17:48 +00:00
|
|
|
|
product of all time-contractions of pairs of contracted elements in `φs`,
|
|
|
|
|
as a member of the center of `𝓞.A`. -/
|
2025-02-03 11:28:14 +00:00
|
|
|
|
noncomputable def timeContract {φs : List 𝓕.FieldOp}
|
2025-01-24 06:39:30 +00:00
|
|
|
|
(φsΛ : WickContraction φs.length) :
|
2025-01-30 11:00:25 +00:00
|
|
|
|
Subalgebra.center ℂ 𝓕.FieldOpAlgebra :=
|
|
|
|
|
∏ (a : φsΛ.1), ⟨FieldOpAlgebra.timeContract
|
2025-01-24 06:39:30 +00:00
|
|
|
|
(φs.get (φsΛ.fstFieldOfContract a)) (φs.get (φsΛ.sndFieldOfContract a)),
|
2025-01-30 11:00:25 +00:00
|
|
|
|
timeContract_mem_center _ _⟩
|
2025-01-20 15:17:48 +00:00
|
|
|
|
|
2025-01-24 11:09:25 +00:00
|
|
|
|
/-- For `φsΛ` a Wick contraction for `φs`, the time contraction `(φsΛ ↩Λ φ i none).timeContract 𝓞`
|
|
|
|
|
is equal to `φsΛ.timeContract 𝓞`.
|
|
|
|
|
|
|
|
|
|
This result follows from the fact that `timeContract` only depends on contracted pairs,
|
|
|
|
|
and `(φsΛ ↩Λ φ i none)` has the 'same' contracted pairs as `φsΛ`. -/
|
2025-01-20 15:17:48 +00:00
|
|
|
|
@[simp]
|
2025-01-30 11:00:25 +00:00
|
|
|
|
lemma timeContract_insertAndContract_none
|
2025-02-03 11:28:14 +00:00
|
|
|
|
(φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
2025-01-24 06:39:30 +00:00
|
|
|
|
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) :
|
2025-01-30 11:08:10 +00:00
|
|
|
|
(φsΛ ↩Λ φ i none).timeContract = φsΛ.timeContract := by
|
2025-01-24 07:18:48 +00:00
|
|
|
|
rw [timeContract, insertAndContract_none_prod_contractions]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
congr
|
|
|
|
|
ext a
|
|
|
|
|
simp
|
|
|
|
|
|
2025-01-24 13:48:00 +00:00
|
|
|
|
/-- For `φsΛ` a Wick contraction for `φs = φ₀…φₙ`, the time contraction
|
|
|
|
|
`(φsΛ ↩Λ φ i (some j)).timeContract 𝓞` is equal to the multiple of
|
|
|
|
|
- the time contraction of `φ` with `φⱼ` if `i < i.succAbove j` else
|
|
|
|
|
`φⱼ` with `φ`.
|
|
|
|
|
- `φsΛ.timeContract 𝓞`.
|
|
|
|
|
This follows from the fact that `(φsΛ ↩Λ φ i (some j))` has one more contracted pair than `φsΛ`,
|
|
|
|
|
corresponding to `φ` contracted with `φⱼ`. The order depends on whether we insert `φ` before
|
|
|
|
|
or after `φⱼ`. -/
|
2025-01-30 11:00:25 +00:00
|
|
|
|
lemma timeConract_insertAndContract_some
|
2025-02-03 11:28:14 +00:00
|
|
|
|
(φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
2025-01-24 06:39:30 +00:00
|
|
|
|
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : φsΛ.uncontracted) :
|
2025-01-30 11:00:25 +00:00
|
|
|
|
(φsΛ ↩Λ φ i (some j)).timeContract =
|
2025-01-20 15:17:48 +00:00
|
|
|
|
(if i < i.succAbove j then
|
2025-01-30 11:00:25 +00:00
|
|
|
|
⟨FieldOpAlgebra.timeContract φ φs[j.1], timeContract_mem_center _ _⟩
|
2025-01-30 11:08:10 +00:00
|
|
|
|
else ⟨FieldOpAlgebra.timeContract φs[j.1] φ, timeContract_mem_center _ _⟩) *
|
|
|
|
|
φsΛ.timeContract := by
|
2025-01-24 07:18:48 +00:00
|
|
|
|
rw [timeContract, insertAndContract_some_prod_contractions]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
congr 1
|
2025-01-24 07:18:48 +00:00
|
|
|
|
· simp only [Nat.succ_eq_add_one, insertAndContract_fstFieldOfContract_some_incl, finCongr_apply,
|
|
|
|
|
List.get_eq_getElem, insertAndContract_sndFieldOfContract_some_incl, Fin.getElem_fin]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
split
|
|
|
|
|
· simp
|
|
|
|
|
· simp
|
|
|
|
|
· congr
|
|
|
|
|
ext a
|
|
|
|
|
simp
|
|
|
|
|
|
2025-02-01 11:51:06 +00:00
|
|
|
|
@[simp]
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma timeContract_empty (φs : List 𝓕.FieldOp) :
|
2025-02-01 11:51:06 +00:00
|
|
|
|
(@empty φs.length).timeContract = 1 := by
|
|
|
|
|
rw [timeContract, empty]
|
|
|
|
|
simp
|
|
|
|
|
|
2025-01-20 15:17:48 +00:00
|
|
|
|
open FieldStatistic
|
|
|
|
|
|
2025-01-24 07:18:48 +00:00
|
|
|
|
lemma timeConract_insertAndContract_some_eq_mul_contractStateAtIndex_lt
|
2025-02-03 11:28:14 +00:00
|
|
|
|
(φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
2025-01-24 06:39:30 +00:00
|
|
|
|
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (k : φsΛ.uncontracted)
|
2025-01-20 15:17:48 +00:00
|
|
|
|
(ht : 𝓕.timeOrderRel φ φs[k.1]) (hik : i < i.succAbove k) :
|
2025-01-30 11:08:10 +00:00
|
|
|
|
(φsΛ ↩Λ φ i (some k)).timeContract =
|
2025-01-24 06:39:30 +00:00
|
|
|
|
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (φsΛ.uncontracted.filter (fun x => x < k))⟩)
|
2025-02-03 11:28:14 +00:00
|
|
|
|
• (contractStateAtIndex φ [φsΛ]ᵘᶜ ((uncontractedFieldOpEquiv φs φsΛ) (some k)) *
|
2025-01-30 11:08:10 +00:00
|
|
|
|
φsΛ.timeContract) := by
|
2025-01-24 07:18:48 +00:00
|
|
|
|
rw [timeConract_insertAndContract_some]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp only [Nat.succ_eq_add_one, Fin.getElem_fin, ite_mul, instCommGroup.eq_1,
|
2025-02-03 11:28:14 +00:00
|
|
|
|
contractStateAtIndex, uncontractedFieldOpEquiv, Equiv.optionCongr_apply,
|
2025-01-20 15:17:48 +00:00
|
|
|
|
Equiv.coe_trans, Option.map_some', Function.comp_apply, finCongr_apply, Fin.coe_cast,
|
2025-01-22 06:48:58 +00:00
|
|
|
|
List.getElem_map, uncontractedList_getElem_uncontractedIndexEquiv_symm, List.get_eq_getElem,
|
2025-01-24 06:39:30 +00:00
|
|
|
|
Algebra.smul_mul_assoc, uncontractedListGet]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
· simp only [hik, ↓reduceIte, MulMemClass.coe_mul]
|
2025-01-30 11:00:25 +00:00
|
|
|
|
rw [timeContract_of_timeOrderRel]
|
2025-01-30 11:08:10 +00:00
|
|
|
|
trans (1 : ℂ) • ((superCommute (anPart φ)) (ofFieldOp φs[k.1]) * ↑φsΛ.timeContract)
|
2025-01-20 15:17:48 +00:00
|
|
|
|
· simp
|
|
|
|
|
simp only [smul_smul]
|
2025-01-30 11:00:25 +00:00
|
|
|
|
congr 1
|
2025-01-24 06:39:30 +00:00
|
|
|
|
have h1 : ofList 𝓕.statesStatistic (List.take (↑(φsΛ.uncontractedIndexEquiv.symm k))
|
|
|
|
|
(List.map φs.get φsΛ.uncontractedList))
|
|
|
|
|
= (𝓕 |>ₛ ⟨φs.get, (Finset.filter (fun x => x < k) φsΛ.uncontracted)⟩) := by
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp only [ofFinset]
|
|
|
|
|
congr
|
|
|
|
|
rw [← List.map_take]
|
|
|
|
|
congr
|
2025-01-22 06:48:58 +00:00
|
|
|
|
rw [take_uncontractedIndexEquiv_symm]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
rw [filter_uncontractedList]
|
|
|
|
|
rw [h1]
|
|
|
|
|
simp only [exchangeSign_mul_self]
|
|
|
|
|
· exact ht
|
|
|
|
|
|
2025-01-24 07:18:48 +00:00
|
|
|
|
lemma timeConract_insertAndContract_some_eq_mul_contractStateAtIndex_not_lt
|
2025-02-03 11:28:14 +00:00
|
|
|
|
(φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
2025-01-24 06:39:30 +00:00
|
|
|
|
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (k : φsΛ.uncontracted)
|
2025-01-20 15:17:48 +00:00
|
|
|
|
(ht : ¬ 𝓕.timeOrderRel φs[k.1] φ) (hik : ¬ i < i.succAbove k) :
|
2025-01-30 11:00:25 +00:00
|
|
|
|
(φsΛ ↩Λ φ i (some k)).timeContract =
|
2025-01-24 06:39:30 +00:00
|
|
|
|
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (φsΛ.uncontracted.filter (fun x => x ≤ k))⟩)
|
2025-01-30 11:00:25 +00:00
|
|
|
|
• (contractStateAtIndex φ [φsΛ]ᵘᶜ
|
2025-02-03 11:28:14 +00:00
|
|
|
|
((uncontractedFieldOpEquiv φs φsΛ) (some k)) * φsΛ.timeContract) := by
|
2025-01-24 07:18:48 +00:00
|
|
|
|
rw [timeConract_insertAndContract_some]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp only [Nat.succ_eq_add_one, Fin.getElem_fin, ite_mul, instCommGroup.eq_1,
|
2025-02-03 11:28:14 +00:00
|
|
|
|
contractStateAtIndex, uncontractedFieldOpEquiv, Equiv.optionCongr_apply,
|
2025-01-20 15:17:48 +00:00
|
|
|
|
Equiv.coe_trans, Option.map_some', Function.comp_apply, finCongr_apply, Fin.coe_cast,
|
2025-01-22 06:48:58 +00:00
|
|
|
|
List.getElem_map, uncontractedList_getElem_uncontractedIndexEquiv_symm, List.get_eq_getElem,
|
2025-01-24 06:39:30 +00:00
|
|
|
|
Algebra.smul_mul_assoc, uncontractedListGet]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp only [hik, ↓reduceIte, MulMemClass.coe_mul]
|
2025-01-30 11:00:25 +00:00
|
|
|
|
rw [timeContract_of_not_timeOrderRel, timeContract_of_timeOrderRel]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp only [instCommGroup.eq_1, Algebra.smul_mul_assoc, smul_smul]
|
|
|
|
|
congr
|
2025-01-24 06:39:30 +00:00
|
|
|
|
have h1 : ofList 𝓕.statesStatistic (List.take (↑(φsΛ.uncontractedIndexEquiv.symm k))
|
|
|
|
|
(List.map φs.get φsΛ.uncontractedList))
|
|
|
|
|
= (𝓕 |>ₛ ⟨φs.get, (Finset.filter (fun x => x < k) φsΛ.uncontracted)⟩) := by
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp only [ofFinset]
|
|
|
|
|
congr
|
|
|
|
|
rw [← List.map_take]
|
|
|
|
|
congr
|
2025-01-22 06:48:58 +00:00
|
|
|
|
rw [take_uncontractedIndexEquiv_symm, filter_uncontractedList]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
rw [h1]
|
|
|
|
|
trans 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, {k.1}⟩)
|
|
|
|
|
· rw [exchangeSign_symm, ofFinset_singleton]
|
|
|
|
|
simp
|
|
|
|
|
rw [← map_mul]
|
|
|
|
|
congr
|
|
|
|
|
rw [ofFinset_union]
|
|
|
|
|
congr
|
|
|
|
|
ext a
|
|
|
|
|
simp only [Finset.mem_singleton, Finset.mem_sdiff, Finset.mem_union, Finset.mem_filter,
|
|
|
|
|
Finset.mem_inter, not_and, not_lt, and_imp]
|
|
|
|
|
apply Iff.intro
|
|
|
|
|
· intro h
|
|
|
|
|
subst h
|
|
|
|
|
simp
|
|
|
|
|
· intro h
|
|
|
|
|
have h1 := h.1
|
|
|
|
|
rcases h1 with h1 | h1
|
|
|
|
|
· have h2' := h.2 h1.1 h1.2 h1.1
|
|
|
|
|
omega
|
|
|
|
|
· have h2' := h.2 h1.1 (by omega) h1.1
|
|
|
|
|
omega
|
|
|
|
|
have ht := IsTotal.total (r := timeOrderRel) φs[k.1] φ
|
|
|
|
|
simp_all only [Fin.getElem_fin, Nat.succ_eq_add_one, not_lt, false_or]
|
|
|
|
|
exact ht
|
|
|
|
|
|
2025-02-03 11:28:14 +00:00
|
|
|
|
lemma timeContract_of_not_gradingCompliant (φs : List 𝓕.FieldOp)
|
2025-01-24 06:39:30 +00:00
|
|
|
|
(φsΛ : WickContraction φs.length) (h : ¬ GradingCompliant φs φsΛ) :
|
2025-01-30 11:00:25 +00:00
|
|
|
|
φsΛ.timeContract = 0 := by
|
2025-01-20 15:17:48 +00:00
|
|
|
|
rw [timeContract]
|
|
|
|
|
simp only [GradingCompliant, Fin.getElem_fin, Subtype.forall, not_forall] at h
|
|
|
|
|
obtain ⟨a, ha⟩ := h
|
|
|
|
|
obtain ⟨ha, ha2⟩ := ha
|
|
|
|
|
apply Finset.prod_eq_zero (i := ⟨a, ha⟩)
|
|
|
|
|
simp only [Finset.univ_eq_attach, Finset.mem_attach]
|
|
|
|
|
apply Subtype.eq
|
|
|
|
|
simp only [List.get_eq_getElem, ZeroMemClass.coe_zero]
|
2025-01-30 11:00:25 +00:00
|
|
|
|
rw [timeContract_zero_of_diff_grade]
|
2025-01-20 15:17:48 +00:00
|
|
|
|
simp [ha2]
|
|
|
|
|
|
|
|
|
|
end WickContraction
|