2024-12-20 10:59:26 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
Authors: Joseph Tooby-Smith
|
|
|
|
|
-/
|
|
|
|
|
import Mathlib.Algebra.FreeAlgebra
|
|
|
|
|
import Mathlib.Algebra.Lie.OfAssociative
|
|
|
|
|
import Mathlib.Analysis.Complex.Basic
|
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
# Field statistics
|
|
|
|
|
|
|
|
|
|
Basic properties related to whether a field, or list of fields, is bosonic or fermionic.
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
/-- A field can either be bosonic or fermionic in nature.
|
|
|
|
|
That is to say, they can either have Bose-Einstein statistics or
|
|
|
|
|
Fermi-Dirac statistics. -/
|
|
|
|
|
inductive FieldStatistic : Type where
|
|
|
|
|
| bosonic : FieldStatistic
|
|
|
|
|
| fermionic : FieldStatistic
|
|
|
|
|
deriving DecidableEq
|
|
|
|
|
|
|
|
|
|
namespace FieldStatistic
|
|
|
|
|
|
|
|
|
|
variable {𝓕 : Type}
|
|
|
|
|
|
|
|
|
|
/-- Field statics form a finite type. -/
|
|
|
|
|
instance : Fintype FieldStatistic where
|
|
|
|
|
elems := {bosonic, fermionic}
|
|
|
|
|
complete := by
|
|
|
|
|
intro c
|
|
|
|
|
cases c
|
|
|
|
|
· exact Finset.mem_insert_self bosonic {fermionic}
|
|
|
|
|
· refine Finset.insert_eq_self.mp ?_
|
|
|
|
|
exact rfl
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma fermionic_not_eq_bonsic : ¬ fermionic = bosonic := by
|
|
|
|
|
intro h
|
|
|
|
|
exact FieldStatistic.noConfusion h
|
|
|
|
|
|
2024-12-20 11:45:23 +00:00
|
|
|
|
lemma bonsic_eq_fermionic_false : bosonic = fermionic ↔ false := by
|
|
|
|
|
simp only [reduceCtorEq, Bool.false_eq_true]
|
|
|
|
|
|
2024-12-20 10:59:26 +00:00
|
|
|
|
@[simp]
|
|
|
|
|
lemma neq_fermionic_iff_eq_bosonic (a : FieldStatistic) : ¬ a = fermionic ↔ a = bosonic := by
|
|
|
|
|
fin_cases a
|
|
|
|
|
· simp
|
|
|
|
|
· simp
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma bosonic_neq_iff_fermionic_eq (a : FieldStatistic) : ¬ bosonic = a ↔ fermionic = a := by
|
|
|
|
|
fin_cases a
|
|
|
|
|
· simp
|
|
|
|
|
· simp
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma fermionic_neq_iff_bosonic_eq (a : FieldStatistic) : ¬ fermionic = a ↔ bosonic = a := by
|
|
|
|
|
fin_cases a
|
|
|
|
|
· simp
|
|
|
|
|
· simp
|
|
|
|
|
|
|
|
|
|
lemma eq_self_if_eq_bosonic {a : FieldStatistic} :
|
|
|
|
|
(if a = bosonic then bosonic else fermionic) = a := by
|
|
|
|
|
fin_cases a <;> rfl
|
|
|
|
|
|
|
|
|
|
lemma eq_self_if_bosonic_eq {a : FieldStatistic} :
|
|
|
|
|
(if bosonic = a then bosonic else fermionic) = a := by
|
|
|
|
|
fin_cases a <;> rfl
|
|
|
|
|
|
|
|
|
|
/-- The field statistics of a list of fields is fermionic if ther is an odd number of fermions,
|
|
|
|
|
otherwise it is bosonic. -/
|
|
|
|
|
def ofList (s : 𝓕 → FieldStatistic) : (φs : List 𝓕) → FieldStatistic
|
|
|
|
|
| [] => bosonic
|
|
|
|
|
| φ :: φs => if s φ = ofList s φs then bosonic else fermionic
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma ofList_singleton (s : 𝓕 → FieldStatistic) (φ : 𝓕) : ofList s [φ] = s φ := by
|
|
|
|
|
simp only [ofList, Fin.isValue]
|
|
|
|
|
rw [eq_self_if_eq_bosonic]
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma ofList_freeMonoid (s : 𝓕 → FieldStatistic) (φ : 𝓕) : ofList s (FreeMonoid.of φ) = s φ :=
|
|
|
|
|
ofList_singleton s φ
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma ofList_empty (s : 𝓕 → FieldStatistic) : ofList s [] = bosonic := rfl
|
|
|
|
|
|
|
|
|
|
@[simp]
|
2025-01-03 05:12:54 +00:00
|
|
|
|
lemma ofList_append (s : 𝓕 → FieldStatistic) (φs φs' : List 𝓕) :
|
|
|
|
|
ofList s (φs ++ φs') = if ofList s φs = ofList s φs' then bosonic else fermionic := by
|
|
|
|
|
induction φs with
|
2024-12-20 10:59:26 +00:00
|
|
|
|
| nil =>
|
|
|
|
|
simp only [List.nil_append, ofList_empty, Fin.isValue, eq_self_if_bosonic_eq]
|
|
|
|
|
| cons a l ih =>
|
|
|
|
|
have hab (a b c : FieldStatistic) :
|
|
|
|
|
(if a = (if b = c then bosonic else fermionic) then bosonic else fermionic) =
|
|
|
|
|
if (if a = b then bosonic else fermionic) = c then bosonic else fermionic := by
|
|
|
|
|
fin_cases a <;> fin_cases b <;> fin_cases c <;> rfl
|
|
|
|
|
simp only [ofList, List.append_eq, Fin.isValue, ih, hab]
|
|
|
|
|
|
|
|
|
|
lemma ofList_eq_countP (s : 𝓕 → FieldStatistic) (φs : List 𝓕) :
|
|
|
|
|
ofList s φs = if Nat.mod (List.countP (fun i => decide (s i = fermionic)) φs) 2 = 0 then
|
|
|
|
|
bosonic else fermionic := by
|
|
|
|
|
induction φs with
|
|
|
|
|
| nil => simp
|
|
|
|
|
| cons r0 r ih =>
|
|
|
|
|
simp only [ofList]
|
|
|
|
|
rw [List.countP_cons]
|
|
|
|
|
simp only [decide_eq_true_eq]
|
|
|
|
|
by_cases hr : s r0 = fermionic
|
|
|
|
|
· simp only [hr, ↓reduceIte]
|
|
|
|
|
simp_all only
|
|
|
|
|
split
|
|
|
|
|
next h =>
|
|
|
|
|
simp_all only [↓reduceIte, fermionic_not_eq_bonsic]
|
|
|
|
|
split
|
|
|
|
|
next h_1 =>
|
|
|
|
|
simp_all only [fermionic_not_eq_bonsic]
|
|
|
|
|
have ha (a : ℕ) (ha : a % 2 = 0) : (a + 1) % 2 ≠ 0 := by
|
|
|
|
|
omega
|
|
|
|
|
exact ha (List.countP (fun i => decide (s i = fermionic)) r) h h_1
|
|
|
|
|
next h_1 => simp_all only
|
|
|
|
|
next h =>
|
|
|
|
|
simp_all only [↓reduceIte]
|
|
|
|
|
split
|
|
|
|
|
next h_1 => rfl
|
|
|
|
|
next h_1 =>
|
|
|
|
|
simp_all only [reduceCtorEq]
|
|
|
|
|
have ha (a : ℕ) (ha : ¬ a % 2 = 0) : (a + 1) % 2 = 0 := by
|
|
|
|
|
omega
|
|
|
|
|
exact h_1 (ha (List.countP (fun i => decide (s i = fermionic)) r) h)
|
|
|
|
|
· simp only [neq_fermionic_iff_eq_bosonic] at hr
|
|
|
|
|
by_cases hx : (List.countP (fun i => decide (s i = fermionic)) r).mod 2 = 0
|
|
|
|
|
· simpa [hx, hr] using ih.symm
|
|
|
|
|
· simpa [hx, hr] using ih.symm
|
|
|
|
|
|
|
|
|
|
lemma ofList_perm (s : 𝓕 → FieldStatistic) {l l' : List 𝓕} (h : l.Perm l') :
|
|
|
|
|
ofList s l = ofList s l' := by
|
|
|
|
|
rw [ofList_eq_countP, ofList_eq_countP, h.countP_eq]
|
|
|
|
|
|
|
|
|
|
lemma ofList_orderedInsert (s : 𝓕 → FieldStatistic) (le1 : 𝓕 → 𝓕 → Prop) [DecidableRel le1]
|
|
|
|
|
(φs : List 𝓕) (φ : 𝓕) : ofList s (List.orderedInsert le1 φ φs) = ofList s (φ :: φs) :=
|
|
|
|
|
ofList_perm s (List.perm_orderedInsert le1 φ φs)
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
lemma ofList_insertionSort (s : 𝓕 → FieldStatistic) (le1 : 𝓕 → 𝓕 → Prop) [DecidableRel le1]
|
|
|
|
|
(φs : List 𝓕) : ofList s (List.insertionSort le1 φs) = ofList s φs :=
|
|
|
|
|
ofList_perm s (List.perm_insertionSort le1 φs)
|
|
|
|
|
|
|
|
|
|
end FieldStatistic
|