PhysLean/HepLean/PerturbationTheory/Wick/KoszulOrder.lean

246 lines
10 KiB
Text
Raw Normal View History

2024-12-15 12:42:50 +00:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
2024-12-19 14:25:09 +00:00
import HepLean.PerturbationTheory.Wick.Signs.StaticWickCoef
2024-12-15 12:42:50 +00:00
/-!
# Koszul signs and ordering for lists and algebras
-/
namespace Wick
noncomputable section
2024-12-20 12:45:55 +00:00
open FieldStatistic
variable {𝓕 : Type} (q : 𝓕 → FieldStatistic) (le : 𝓕𝓕 → Prop) [DecidableRel le]
2024-12-15 12:42:50 +00:00
/-- Given a relation `r` on `I` sorts elements of `MonoidAlgebra (FreeMonoid I)` by `r` giving it
a signed dependent on `q`. -/
2024-12-20 12:45:55 +00:00
def koszulOrderMonoidAlgebra :
MonoidAlgebra (FreeMonoid 𝓕) →ₗ[] MonoidAlgebra (FreeMonoid 𝓕) :=
Finsupp.lift (MonoidAlgebra (FreeMonoid 𝓕)) (List 𝓕)
(fun i => Finsupp.lsingle (R := ) (List.insertionSort le i) (koszulSign q le i))
lemma koszulOrderMonoidAlgebra_ofList (i : List 𝓕) :
koszulOrderMonoidAlgebra q le (MonoidAlgebra.of (FreeMonoid 𝓕) i) =
(koszulSign q le i) • (MonoidAlgebra.of (FreeMonoid 𝓕) (List.insertionSort le i)) := by
2024-12-15 12:42:50 +00:00
simp only [koszulOrderMonoidAlgebra, Finsupp.lsingle_apply, MonoidAlgebra.of_apply,
MonoidAlgebra.smul_single', mul_one]
rw [MonoidAlgebra.ext_iff]
intro x
erw [Finsupp.lift_apply]
simp only [MonoidAlgebra.smul_single', zero_mul, Finsupp.single_zero, Finsupp.sum_single_index,
one_mul]
@[simp]
2024-12-20 12:45:55 +00:00
lemma koszulOrderMonoidAlgebra_single (l : FreeMonoid 𝓕) (x : ) :
koszulOrderMonoidAlgebra q le (MonoidAlgebra.single l x)
= (koszulSign q le l) • (MonoidAlgebra.single (List.insertionSort le l) x) := by
2024-12-15 12:42:50 +00:00
simp only [koszulOrderMonoidAlgebra, Finsupp.lsingle_apply, MonoidAlgebra.smul_single']
rw [MonoidAlgebra.ext_iff]
intro x'
erw [Finsupp.lift_apply]
simp only [MonoidAlgebra.smul_single', zero_mul, Finsupp.single_zero, Finsupp.sum_single_index,
one_mul, MonoidAlgebra.single]
congr 2
rw [NonUnitalNormedCommRing.mul_comm]
/-- Given a relation `r` on `I` sorts elements of `FreeAlgebra I` by `r` giving it
a signed dependent on `q`. -/
2024-12-20 12:45:55 +00:00
def koszulOrder : FreeAlgebra 𝓕 →ₗ[] FreeAlgebra 𝓕 :=
2024-12-15 12:42:50 +00:00
FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm.toAlgHom.toLinearMap
2024-12-20 12:45:55 +00:00
∘ₗ koszulOrderMonoidAlgebra q le
2024-12-15 12:42:50 +00:00
∘ₗ FreeAlgebra.equivMonoidAlgebraFreeMonoid.toAlgHom.toLinearMap
@[simp]
2024-12-20 12:45:55 +00:00
lemma koszulOrder_ι (i : 𝓕) : koszulOrder q le (FreeAlgebra.ι i) = FreeAlgebra.ι i := by
2024-12-15 12:42:50 +00:00
simp only [koszulOrder, AlgEquiv.toAlgHom_eq_coe, AlgEquiv.toAlgHom_toLinearMap,
koszulOrderMonoidAlgebra, Finsupp.lsingle_apply, LinearMap.coe_comp, Function.comp_apply,
AlgEquiv.toLinearMap_apply]
rw [AlgEquiv.symm_apply_eq]
simp only [FreeAlgebra.equivMonoidAlgebraFreeMonoid, MonoidAlgebra.of_apply,
AlgEquiv.ofAlgHom_apply, FreeAlgebra.lift_ι_apply]
rw [@MonoidAlgebra.ext_iff]
intro x
erw [Finsupp.lift_apply]
simp only [MonoidAlgebra.smul_single', List.insertionSort, List.orderedInsert,
koszulSign_freeMonoid_of, mul_one, Finsupp.single_zero, Finsupp.sum_single_index]
rfl
@[simp]
2024-12-20 12:45:55 +00:00
lemma koszulOrder_single (l : FreeMonoid 𝓕) :
koszulOrder q le (FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm (MonoidAlgebra.single l x))
2024-12-15 12:42:50 +00:00
= FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm
2024-12-20 12:45:55 +00:00
(MonoidAlgebra.single (List.insertionSort le l) (koszulSign q le l * x)) := by
2024-12-15 12:42:50 +00:00
simp [koszulOrder]
@[simp]
2024-12-20 12:45:55 +00:00
lemma koszulOrder_ι_pair (i j : 𝓕) : koszulOrder q le (FreeAlgebra.ι i * FreeAlgebra.ι j) =
if le i j then FreeAlgebra.ι i * FreeAlgebra.ι j else
(koszulSign q le [i, j]) • (FreeAlgebra.ι j * FreeAlgebra.ι i) := by
2024-12-15 12:42:50 +00:00
have h1 : FreeAlgebra.ι i * FreeAlgebra.ι j =
FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm (MonoidAlgebra.single [i, j] 1) := by
simp only [FreeAlgebra.equivMonoidAlgebraFreeMonoid, MonoidAlgebra.of_apply,
AlgEquiv.ofAlgHom_symm_apply, MonoidAlgebra.lift_single, one_smul]
rfl
conv_lhs => rw [h1]
simp only [koszulOrder, AlgEquiv.toAlgHom_eq_coe, AlgEquiv.toAlgHom_toLinearMap,
LinearMap.coe_comp, Function.comp_apply, AlgEquiv.toLinearMap_apply, AlgEquiv.apply_symm_apply,
koszulOrderMonoidAlgebra_single, List.insertionSort, List.orderedInsert,
MonoidAlgebra.smul_single', mul_one]
2024-12-20 12:45:55 +00:00
by_cases hr : le i j
2024-12-15 12:42:50 +00:00
· rw [if_pos hr, if_pos hr]
simp only [FreeAlgebra.equivMonoidAlgebraFreeMonoid, MonoidAlgebra.of_apply,
AlgEquiv.ofAlgHom_symm_apply, MonoidAlgebra.lift_single]
2024-12-20 12:45:55 +00:00
have hKS : koszulSign q le [i, j] = 1 := by
2024-12-15 12:42:50 +00:00
simp only [koszulSign, koszulSignInsert, Fin.isValue, mul_one, ite_eq_left_iff,
ite_eq_right_iff, and_imp]
exact fun a a_1 a_2 => False.elim (a hr)
rw [hKS]
simp only [one_smul]
rfl
· rw [if_neg hr, if_neg hr]
simp only [FreeAlgebra.equivMonoidAlgebraFreeMonoid, MonoidAlgebra.of_apply,
AlgEquiv.ofAlgHom_symm_apply, MonoidAlgebra.lift_single]
rfl
@[simp]
2024-12-20 12:45:55 +00:00
lemma koszulOrder_one : koszulOrder q le 1 = 1 := by
trans koszulOrder q le (FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm (MonoidAlgebra.single [] 1))
2024-12-15 12:42:50 +00:00
congr
· simp only [FreeAlgebra.equivMonoidAlgebraFreeMonoid, MonoidAlgebra.of_apply,
AlgEquiv.ofAlgHom_symm_apply, MonoidAlgebra.lift_single, one_smul]
rfl
· simp only [koszulOrder_single, List.insertionSort, mul_one, EmbeddingLike.map_eq_one_iff]
rfl
2024-12-20 12:45:55 +00:00
lemma mul_koszulOrder_le (i : 𝓕) (A : FreeAlgebra 𝓕) (hi : ∀ j, le i j) :
FreeAlgebra.ι i * koszulOrder q le A = koszulOrder q le (FreeAlgebra.ι i * A) := by
let f : FreeAlgebra 𝓕 →ₗ[] FreeAlgebra 𝓕 := {
2024-12-15 12:42:50 +00:00
toFun := fun x => FreeAlgebra.ι i * x,
map_add' := fun x y => by
simp [mul_add],
map_smul' := by simp}
2024-12-20 12:45:55 +00:00
change (f ∘ₗ koszulOrder q le) A = (koszulOrder q le ∘ₗ f) _
have f_single (l : FreeMonoid 𝓕) (x : ) :
2024-12-15 12:42:50 +00:00
f ((FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm (MonoidAlgebra.single l x)))
= (FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm (MonoidAlgebra.single (i :: l) x)) := by
simp only [LinearMap.coe_mk, AddHom.coe_mk, f]
2024-12-19 12:59:14 +00:00
have hf : FreeAlgebra.ι i = FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm
(MonoidAlgebra.single [i] 1) := by
2024-12-15 12:42:50 +00:00
simp only [FreeAlgebra.equivMonoidAlgebraFreeMonoid, MonoidAlgebra.of_apply,
AlgEquiv.ofAlgHom_symm_apply, MonoidAlgebra.lift_single, one_smul]
rfl
rw [hf]
rw [@AlgEquiv.eq_symm_apply]
simp only [map_mul, AlgEquiv.apply_symm_apply, MonoidAlgebra.single_mul_single, one_mul]
rfl
2024-12-20 12:45:55 +00:00
have h1 : f ∘ₗ koszulOrder q le = koszulOrder q le ∘ₗ f := by
let e : FreeAlgebra 𝓕 ≃ₗ[] MonoidAlgebra (FreeMonoid 𝓕) :=
2024-12-15 12:42:50 +00:00
FreeAlgebra.equivMonoidAlgebraFreeMonoid.toLinearEquiv
apply (LinearEquiv.eq_comp_toLinearMap_iff (e₁₂ := e.symm) _ _).mp
apply MonoidAlgebra.lhom_ext'
intro l
apply LinearMap.ext
intro x
simp only [LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply,
MonoidAlgebra.lsingle_apply]
erw [koszulOrder_single]
rw [f_single]
erw [f_single]
rw [koszulOrder_single]
congr 2
· simp only [List.insertionSort]
2024-12-20 12:45:55 +00:00
have hi (l : List 𝓕) : i :: l = List.orderedInsert le i l := by
2024-12-15 12:42:50 +00:00
induction l with
| nil => rfl
| cons j l ih =>
2024-12-20 12:45:55 +00:00
refine (List.orderedInsert_of_le le l (hi j)).symm
2024-12-15 12:42:50 +00:00
exact hi _
· congr 1
rw [koszulSign]
2024-12-20 12:45:55 +00:00
have h1 (l : List 𝓕) : koszulSignInsert q le i l = 1 := by
exact koszulSignInsert_le_forall q le i l hi
2024-12-15 12:42:50 +00:00
rw [h1]
simp
rw [h1]
2024-12-20 12:45:55 +00:00
lemma koszulOrder_mul_ge (i : 𝓕) (A : FreeAlgebra 𝓕) (hi : ∀ j, le j i) :
koszulOrder q le A * FreeAlgebra.ι i = koszulOrder q le (A * FreeAlgebra.ι i) := by
let f : FreeAlgebra 𝓕 →ₗ[] FreeAlgebra 𝓕 := {
2024-12-19 12:59:14 +00:00
toFun := fun x => x * FreeAlgebra.ι i,
2024-12-15 12:42:50 +00:00
map_add' := fun x y => by
simp [add_mul],
map_smul' := by simp}
2024-12-20 12:45:55 +00:00
change (f ∘ₗ koszulOrder q le) A = (koszulOrder q le ∘ₗ f) A
have f_single (l : FreeMonoid 𝓕) (x : ) :
2024-12-15 12:42:50 +00:00
f ((FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm (MonoidAlgebra.single l x)))
2024-12-19 12:59:14 +00:00
= (FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm
(MonoidAlgebra.single (l.toList ++ [i]) x)) := by
2024-12-15 12:42:50 +00:00
simp only [LinearMap.coe_mk, AddHom.coe_mk, f]
2024-12-19 12:59:14 +00:00
have hf : FreeAlgebra.ι i = FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm
(MonoidAlgebra.single [i] 1) := by
2024-12-15 12:42:50 +00:00
simp only [FreeAlgebra.equivMonoidAlgebraFreeMonoid, MonoidAlgebra.of_apply,
AlgEquiv.ofAlgHom_symm_apply, MonoidAlgebra.lift_single, one_smul]
rfl
rw [hf]
rw [@AlgEquiv.eq_symm_apply]
simp only [map_mul, AlgEquiv.apply_symm_apply, MonoidAlgebra.single_mul_single, mul_one]
rfl
2024-12-20 12:45:55 +00:00
have h1 : f ∘ₗ koszulOrder q le = koszulOrder q le ∘ₗ f := by
let e : FreeAlgebra 𝓕 ≃ₗ[] MonoidAlgebra (FreeMonoid 𝓕) :=
2024-12-15 12:42:50 +00:00
FreeAlgebra.equivMonoidAlgebraFreeMonoid.toLinearEquiv
apply (LinearEquiv.eq_comp_toLinearMap_iff (e₁₂ := e.symm) _ _).mp
apply MonoidAlgebra.lhom_ext'
intro l
apply LinearMap.ext
intro x
simp only [LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply,
MonoidAlgebra.lsingle_apply]
erw [koszulOrder_single]
rw [f_single]
erw [f_single]
rw [koszulOrder_single]
congr 3
2024-12-20 12:45:55 +00:00
· change (List.insertionSort le l) ++ [i] = List.insertionSort le (l.toList ++ [i])
have hoi (l : List 𝓕) (j : 𝓕) : List.orderedInsert le j (l ++ [i]) =
List.orderedInsert le j l ++ [i] := by
2024-12-15 12:42:50 +00:00
induction l with
| nil => simp [hi]
| cons b l ih =>
simp only [List.orderedInsert, List.append_eq]
2024-12-20 12:45:55 +00:00
by_cases hr : le j b
2024-12-15 12:42:50 +00:00
· rw [if_pos hr, if_pos hr]
rfl
· rw [if_neg hr, if_neg hr]
rw [ih]
rfl
2024-12-20 12:45:55 +00:00
have hI (l : List 𝓕) : (List.insertionSort le l) ++ [i] =
List.insertionSort le (l ++ [i]) := by
2024-12-15 12:42:50 +00:00
induction l with
| nil => rfl
| cons j l ih =>
simp only [List.insertionSort, List.append_eq]
rw [← ih]
rw [hoi]
rw [hI]
rfl
2024-12-20 12:45:55 +00:00
· have hI (l : List 𝓕) : koszulSign q le l = koszulSign q le (l ++ [i]) := by
2024-12-15 12:42:50 +00:00
induction l with
| nil => simp [koszulSign, koszulSignInsert]
| cons j l ih =>
simp only [koszulSign, List.append_eq]
rw [ih]
simp only [mul_eq_mul_right_iff]
apply Or.inl
2024-12-20 12:45:55 +00:00
rw [koszulSignInsert_ge_forall_append q le l j i hi]
2024-12-15 12:42:50 +00:00
rw [hI]
rfl
rw [h1]
end
end Wick