118 lines
3 KiB
Text
118 lines
3 KiB
Text
![]() |
/-
|
|||
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
|
Released under Apache 2.0 license.
|
|||
|
Authors: Joseph Tooby-Smith
|
|||
|
-/
|
|||
|
import HepLean.AnomalyCancellation.SMNu.PlusU1.Basic
|
|||
|
import HepLean.AnomalyCancellation.SMNu.PlusU1.FamilyMaps
|
|||
|
/-!
|
|||
|
# B Minus L in SM with RHN.
|
|||
|
|
|||
|
Relavent definitions for the SM `B-L`.
|
|||
|
|
|||
|
-/
|
|||
|
universe v u
|
|||
|
|
|||
|
namespace SMRHN
|
|||
|
namespace PlusU1
|
|||
|
|
|||
|
open SMνCharges
|
|||
|
open SMνACCs
|
|||
|
open BigOperators
|
|||
|
|
|||
|
variable {n : ℕ}
|
|||
|
|
|||
|
/-- $B - L$ in the 1-family case. -/
|
|||
|
@[simps!]
|
|||
|
def BL₁ : (PlusU1 1).Sols where
|
|||
|
val := fun i =>
|
|||
|
match i with
|
|||
|
| (0 : Fin 6) => 1
|
|||
|
| (1 : Fin 6) => -1
|
|||
|
| (2 : Fin 6) => -1
|
|||
|
| (3 : Fin 6) => -3
|
|||
|
| (4 : Fin 6) => 3
|
|||
|
| (5 : Fin 6) => 3
|
|||
|
linearSol := by
|
|||
|
intro i
|
|||
|
simp at i
|
|||
|
match i with
|
|||
|
| 0 => rfl
|
|||
|
| 1 => rfl
|
|||
|
| 2 => rfl
|
|||
|
| 3 => rfl
|
|||
|
quadSol := by
|
|||
|
intro i
|
|||
|
simp at i
|
|||
|
match i with
|
|||
|
| 0 => rfl
|
|||
|
cubicSol := by rfl
|
|||
|
|
|||
|
/-- $B - L$ in the $n$-family case. -/
|
|||
|
@[simps!]
|
|||
|
def BL (n : ℕ) : (PlusU1 n).Sols :=
|
|||
|
familyUniversalAF n BL₁
|
|||
|
|
|||
|
namespace BL
|
|||
|
|
|||
|
variable {n : ℕ}
|
|||
|
|
|||
|
lemma on_quadBiLin (S : (PlusU1 n).charges) :
|
|||
|
quadBiLin ((BL n).val, S) = 1/2 * accYY S + 3/2 * accSU2 S - 2 * accSU3 S := by
|
|||
|
erw [familyUniversal_quadBiLin]
|
|||
|
rw [accYY_decomp, accSU2_decomp, accSU3_decomp]
|
|||
|
simp
|
|||
|
ring
|
|||
|
|
|||
|
lemma on_quadBiLin_AFL (S : (PlusU1 n).LinSols) : quadBiLin ((BL n).val, S.val) = 0 := by
|
|||
|
rw [on_quadBiLin]
|
|||
|
rw [YYsol S, SU2Sol S, SU3Sol S]
|
|||
|
simp
|
|||
|
|
|||
|
lemma add_AFL_quad (S : (PlusU1 n).LinSols) (a b : ℚ) :
|
|||
|
accQuad (a • S.val + b • (BL n).val) = a ^ 2 * accQuad S.val := by
|
|||
|
erw [BiLinearSymm.toHomogeneousQuad_add, quadSol (b • (BL n)).1]
|
|||
|
rw [quadBiLin.map_smul₁, quadBiLin.map_smul₂, quadBiLin.swap, on_quadBiLin_AFL]
|
|||
|
erw [accQuad.map_smul]
|
|||
|
simp
|
|||
|
|
|||
|
lemma add_quad (S : (PlusU1 n).QuadSols) (a b : ℚ) :
|
|||
|
accQuad (a • S.val + b • (BL n).val) = 0 := by
|
|||
|
rw [add_AFL_quad, quadSol S]
|
|||
|
simp
|
|||
|
|
|||
|
/-- The `QuadSol` obtained by adding $B-L$ to a `QuadSol`. -/
|
|||
|
def addQuad (S : (PlusU1 n).QuadSols) (a b : ℚ) : (PlusU1 n).QuadSols :=
|
|||
|
linearToQuad (a • S.1 + b • (BL n).1.1) (add_quad S a b)
|
|||
|
|
|||
|
lemma addQuad_zero (S : (PlusU1 n).QuadSols) (a : ℚ): addQuad S a 0 = a • S := by
|
|||
|
simp [addQuad, linearToQuad]
|
|||
|
rfl
|
|||
|
|
|||
|
lemma on_cubeTriLin (S : (PlusU1 n).charges) :
|
|||
|
cubeTriLin ((BL n).val, (BL n).val, S) = 9 * accGrav S - 24 * accSU3 S := by
|
|||
|
erw [familyUniversal_cubeTriLin']
|
|||
|
rw [accGrav_decomp, accSU3_decomp]
|
|||
|
simp
|
|||
|
ring
|
|||
|
|
|||
|
lemma on_cubeTriLin_AFL (S : (PlusU1 n).LinSols) :
|
|||
|
cubeTriLin ((BL n).val, (BL n).val, S.val) = 0 := by
|
|||
|
rw [on_cubeTriLin]
|
|||
|
rw [gravSol S, SU3Sol S]
|
|||
|
simp
|
|||
|
|
|||
|
lemma add_AFL_cube (S : (PlusU1 n).LinSols) (a b : ℚ) :
|
|||
|
accCube (a • S.val + b • (BL n).val) =
|
|||
|
a ^ 2 * (a * accCube S.val + 3 * b * cubeTriLin (S.val, S.val, (BL n).val)) := by
|
|||
|
erw [TriLinearSymm.toCubic_add, cubeSol (b • (BL n)), accCube.map_smul]
|
|||
|
repeat rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂, cubeTriLin.map_smul₃]
|
|||
|
rw [on_cubeTriLin_AFL]
|
|||
|
simp
|
|||
|
ring
|
|||
|
|
|||
|
|
|||
|
end BL
|
|||
|
end PlusU1
|
|||
|
end SMRHN
|