PhysLean/HepLean/Tensors/ComplexLorentz/Lemmas.lean

187 lines
7.4 KiB
Text
Raw Normal View History

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.Tree.Elab
import HepLean.Tensors.ComplexLorentz.Basic
import Mathlib.LinearAlgebra.TensorProduct.Basis
2024-10-19 15:26:57 +00:00
import HepLean.Tensors.Tree.NodeIdentities.Basic
import HepLean.Tensors.Tree.NodeIdentities.PermProd
import HepLean.Tensors.Tree.NodeIdentities.PermContr
2024-10-21 14:05:54 +00:00
import HepLean.Tensors.Tree.NodeIdentities.ProdComm
import HepLean.Tensors.Tree.NodeIdentities.ContrSwap
import HepLean.Tensors.Tree.NodeIdentities.ContrContr
/-!
## Lemmas related to complex Lorentz tensors.
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
open Matrix
open MatrixGroups
open Complex
open TensorProduct
open IndexNotation
open CategoryTheory
open TensorTree
open OverColor.Discrete
noncomputable section
namespace Fermion
2024-10-22 10:41:14 +00:00
/-- The vectors forming a basis of
`complexLorentzTensor.F.obj (OverColor.mk ![Color.down, Color.down])`.
Not proved it is a basis yet. -/
2024-10-22 10:33:28 +00:00
def coCoBasis (b : Fin 4 × Fin 4) :
complexLorentzTensor.F.obj (OverColor.mk ![Color.down, Color.down]) :=
PiTensorProduct.tprod (fun i => Fin.cases (Lorentz.complexCoBasisFin4 b.1)
(fun i => Fin.cases (Lorentz.complexCoBasisFin4 b.2) (fun i => i.elim0) i) i)
lemma coCoBasis_eval (e1 e2 : Fin (complexLorentzTensor.repDim Color.down)) (i : Fin 4 × Fin 4) :
complexLorentzTensor.castFin0ToField
((complexLorentzTensor.evalMap 0 e2) ((complexLorentzTensor.evalMap 0 e1) (coCoBasis i))) =
if i = (e1, e2) then 1 else 0 := by
simp only [coCoBasis]
have h1 := @TensorSpecies.evalMap_tprod complexLorentzTensor _ (![Color.down, Color.down]) 0 e1
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Functor.id_obj,
2024-10-22 10:41:14 +00:00
OverColor.mk_hom, Function.comp_apply, cons_val_zero, Fin.cases_zero, Fin.cases_succ] at h1
2024-10-22 10:33:28 +00:00
erw [h1]
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Functor.id_obj, OverColor.mk_hom,
Fin.cases_zero, Fin.cases_succ, _root_.map_smul, smul_eq_mul]
erw [TensorSpecies.evalMap_tprod]
simp only [Fin.isValue, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.succAbove_zero, Functor.id_obj,
OverColor.mk_hom, Function.comp_apply, Fin.succ_zero_eq_one, cons_val_one, head_cons,
Fin.cases_zero, Fin.zero_succAbove, Fin.cases_succ, _root_.map_smul, smul_eq_mul]
erw [complexLorentzTensor.castFin0ToField_tprod]
simp only [Fin.isValue, mul_one]
change (Lorentz.complexCoBasisFin4.repr (Lorentz.complexCoBasisFin4 i.1)) e1 *
2024-10-22 10:41:14 +00:00
(Lorentz.complexCoBasisFin4.repr (Lorentz.complexCoBasisFin4 i.2)) e2 = _
2024-10-22 10:33:28 +00:00
simp only [Basis.repr_self]
rw [Finsupp.single_apply, Finsupp.single_apply]
rw [@ite_zero_mul_ite_zero]
2024-10-22 10:41:14 +00:00
simp only [mul_one]
2024-10-22 10:33:28 +00:00
congr
simp_all only [Fin.isValue, Fin.succAbove_zero, Fin.zero_succAbove, eq_iff_iff]
obtain ⟨fst, snd⟩ := i
simp_all only [Fin.isValue, Prod.mk.injEq]
lemma coMetric_expand : {Lorentz.coMetric | μ ν}ᵀ.tensor =
2024-10-22 10:41:14 +00:00
coCoBasis (0, 0) - coCoBasis (1, 1) - coCoBasis (2, 2) - coCoBasis (3, 3) := by
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
Functor.id_obj, Fin.isValue]
erw [Lorentz.coMetric_apply_one, Lorentz.coMetricVal_expand_tmul]
simp only [Fin.isValue, map_sub]
congr 1
congr 1
congr 1
all_goals
2024-10-22 10:33:28 +00:00
erw [pairIsoSep_tmul, coCoBasis]
simp only [Nat.reduceAdd, Nat.succ_eq_add_one, OverColor.mk_hom, Functor.id_obj, Fin.isValue,
Lorentz.complexCoBasisFin4, Basis.coe_reindex, Function.comp_apply]
rfl
/-- The covariant Lorentz metric is symmetric. -/
lemma coMetric_symm : {Lorentz.coMetric | μ ν = Lorentz.coMetric | ν μ}ᵀ := by
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, perm_tensor]
rw [coMetric_expand]
simp only [TensorSpecies.F, Nat.succ_eq_add_one, Nat.reduceAdd, Functor.id_obj, Fin.isValue,
map_sub]
2024-10-22 10:47:37 +00:00
simp only [coCoBasis, Nat.succ_eq_add_one, Nat.reduceAdd, Functor.id_obj, OverColor.mk_hom,
Lorentz.complexCoBasisFin4, Fin.isValue, Basis.coe_reindex, Function.comp_apply]
congr 1
congr 1
congr 1
all_goals
erw [OverColor.lift.map_tprod]
2024-10-22 10:33:28 +00:00
congr 1
funext i
match i with
| (0 : Fin 2) => rfl
| (1 : Fin 2) => rfl
2024-10-22 10:41:14 +00:00
lemma coMetric_0_0_field : {Lorentz.coMetric | 0 0}ᵀ.field = 1 := by
2024-10-22 10:33:28 +00:00
rw [field, eval_tensor, eval_tensor, coMetric_expand]
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue,
Function.comp_apply, Fin.succ_zero_eq_one, cons_val_one, head_cons, Fin.ofNat'_zero,
cons_val_zero, Functor.id_obj, OverColor.mk_hom, map_sub]
rw [coCoBasis_eval, coCoBasis_eval, coCoBasis_eval, coCoBasis_eval]
simp only [Fin.isValue, Prod.mk_zero_zero, ↓reduceIte, Prod.mk_one_one, one_ne_zero, sub_zero,
Prod.mk_eq_zero, Fin.reduceEq, and_self]
2024-10-21 14:05:54 +00:00
set_option maxRecDepth 20000 in
lemma contr_rank_2_symm {T1 : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
{T2 : (Lorentz.complexCo ⊗ Lorentz.complexCo).V} :
{(T1 | μ ν ⊗ T2 | μ ν) = (T2 | μ ν ⊗ T1 | μ ν)}ᵀ := by
rw [perm_tensor_eq (contr_tensor_eq (contr_tensor_eq (prod_comm _ _ _ _)))]
rw [perm_tensor_eq (contr_tensor_eq (perm_contr _ _))]
rw [perm_tensor_eq (perm_contr _ _)]
rw [perm_perm]
rw [perm_eq_id]
· rw [(contr_tensor_eq (contr_swap _ _))]
rw [perm_contr]
rw [perm_tensor_eq (contr_swap _ _)]
rw [perm_perm]
rw [perm_eq_id]
· rfl
2024-10-22 10:47:37 +00:00
· rfl
2024-10-21 14:05:54 +00:00
· apply OverColor.Hom.ext
ext x
exact Fin.elim0 x
lemma contr_rank_2_symm' {T1 : (Lorentz.complexCo ⊗ Lorentz.complexCo).V}
{T2 : (Lorentz.complexContr ⊗ Lorentz.complexContr).V} :
{(T1 | μ ν ⊗ T2 | μ ν) = (T2 | μ ν ⊗ T1 | μ ν)}ᵀ := by
rw [perm_tensor_eq contr_rank_2_symm]
rw [perm_perm]
rw [perm_eq_id]
apply OverColor.Hom.ext
ext x
exact Fin.elim0 x
2024-10-21 14:28:02 +00:00
set_option maxRecDepth 20000 in
/-- Contracting a rank-2 anti-symmetric tensor with a rank-2 symmetric tensor gives zero. -/
2024-10-21 08:55:20 +00:00
lemma antiSymm_contr_symm {A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
{S : (Lorentz.complexCo ⊗ Lorentz.complexCo).V}
(hA : {A | μ ν = - (A | ν μ)}ᵀ) (hs : {S | μ ν = S | ν μ}ᵀ) :
{A | μ ν ⊗ S | μ ν}ᵀ.tensor = 0 := by
2024-10-21 08:55:20 +00:00
have h1 {M : Type} [AddCommGroup M] [Module M] {x : M} (h : x = - x) : x = 0 := by
rw [eq_neg_iff_add_eq_zero, ← two_smul x] at h
simpa using h
2024-10-21 08:55:20 +00:00
refine h1 ?_
rw [← neg_tensor]
rw [neg_perm] at hA
nth_rewrite 1 [contr_tensor_eq (contr_tensor_eq (prod_tensor_eq_fst hA))]
nth_rewrite 1 [(contr_tensor_eq (contr_tensor_eq (prod_tensor_eq_snd hs)))]
rw [contr_tensor_eq (contr_tensor_eq (neg_fst_prod _ _))]
rw [contr_tensor_eq (neg_contr _)]
rw [neg_contr]
2024-10-21 14:28:02 +00:00
rw [neg_tensor]
apply congrArg
rw [contr_tensor_eq (contr_tensor_eq (prod_perm_left _ _ _ _))]
rw [contr_tensor_eq (perm_contr _ _)]
rw [perm_contr]
rw [perm_tensor_eq (contr_tensor_eq (contr_tensor_eq (prod_perm_right _ _ _ _)))]
rw [perm_tensor_eq (contr_tensor_eq (perm_contr _ _))]
rw [perm_tensor_eq (perm_contr _ _)]
rw [perm_perm]
nth_rewrite 1 [perm_tensor_eq (contr_contr _ _ _)]
rw [perm_perm]
rw [perm_eq_id]
· rfl
· rfl
2024-10-21 14:05:54 +00:00
lemma symm_contr_antiSymm {S : (Lorentz.complexCo ⊗ Lorentz.complexCo).V}
{A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
(hA : {A | μ ν = - (A | ν μ)}ᵀ) (hs : {S | μ ν = S | ν μ}ᵀ) :
{S | μ ν ⊗ A | μ ν}ᵀ.tensor = 0 := by
2024-10-22 10:41:14 +00:00
rw [contr_rank_2_symm', perm_tensor, antiSymm_contr_symm hA hs]
2024-10-21 14:05:54 +00:00
rfl
end Fermion
end