PhysLean/HepLean/Tensors/TensorSpecies/DualRepIso.lean

266 lines
14 KiB
Text
Raw Normal View History

2024-11-18 13:58:22 +00:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.TensorSpecies.MetricTensor
import HepLean.Tensors.Tree.NodeIdentities.Assoc
/-!
# Isomorphism between rep of color `c` and rep of dual color.
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
noncomputable section
namespace TensorSpecies
open TensorTree
variable (S : TensorSpecies)
/-- The morphism from `S.FD.obj (Discrete.mk c)` to `S.FD.obj (Discrete.mk (S.τ c))`
defined by contracting with the metric. -/
def toDualRep (c : S.C) : S.FD.obj (Discrete.mk c) ⟶ S.FD.obj (Discrete.mk (S.τ c)) :=
(ρ_ (S.FD.obj (Discrete.mk c))).inv
≫ (S.FD.obj { as := c } ◁ (S.metric.app (Discrete.mk (S.τ c))))
≫ (α_ (S.FD.obj (Discrete.mk c)) (S.FD.obj (Discrete.mk (S.τ c)))
(S.FD.obj (Discrete.mk (S.τ c)))).inv
≫ (S.contr.app (Discrete.mk c) ▷ S.FD.obj { as := S.τ c })
≫ (λ_ (S.FD.obj (Discrete.mk (S.τ c)))).hom
/-- The `toDualRep` for equal colors is the same, up-to conjugation by a trivial equivalence. -/
lemma toDualRep_congr {c c' : S.C} (h : c = c') : S.toDualRep c = S.FD.map (Discrete.eqToHom h) ≫
S.toDualRep c' ≫ S.FD.map (Discrete.eqToHom (congrArg S.τ h.symm)) := by
subst h
simp only [eqToHom_refl, Discrete.functor_map_id, Category.comp_id, Category.id_comp]
/-- The morphism from `S.FD.obj (Discrete.mk (S.τ c))` to `S.FD.obj (Discrete.mk c)`
defined by contracting with the metric. -/
def fromDualRep (c : S.C) : S.FD.obj (Discrete.mk (S.τ c)) ⟶ S.FD.obj (Discrete.mk c) :=
S.toDualRep (S.τ c) ≫ S.FD.map (Discrete.eqToHom (S.τ_involution c))
/-- The rewriting of `toDualRep` in terms of `contrOneTwoLeft`. -/
lemma toDualRep_apply_eq_contrOneTwoLeft (c : S.C) (x : S.FD.obj (Discrete.mk c)) :
(S.toDualRep c).hom x = (S.tensorToVec (S.τ c)).hom.hom
(contrOneTwoLeft (((S.tensorToVec c).inv.hom x))
(S.metricTensor (S.τ c))) := by
simp only [toDualRep, Monoidal.tensorUnit_obj, Action.comp_hom,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
Action.instMonoidalCategory_rightUnitor_inv_hom, Action.instMonoidalCategory_whiskerLeft_hom,
Action.instMonoidalCategory_associator_inv_hom, Action.instMonoidalCategory_whiskerRight_hom,
Action.instMonoidalCategory_leftUnitor_hom_hom, ModuleCat.coe_comp, Function.comp_apply,
ModuleCat.MonoidalCategory.rightUnitor_inv_apply, ModuleCat.MonoidalCategory.whiskerLeft_apply,
Nat.succ_eq_add_one, Nat.reduceAdd, contrOneTwoLeft, Functor.comp_obj,
Discrete.functor_obj_eq_as, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, OverColor.Discrete.rep_iso_hom_inv_apply]
repeat apply congrArg
erw [pairIsoSep_inv_metricTensor]
rfl
/-- Expansion of `toDualRep` is
`(S.tensorToVec c).inv.hom x | μ ⊗ S.metricTensor (S.τ c) | μ ν`. -/
lemma toDualRep_tensorTree (c : S.C) (x : S.FD.obj (Discrete.mk c)) :
let y : S.F.obj (OverColor.mk ![c]) := (S.tensorToVec c).inv.hom x
(S.toDualRep c).hom x = (S.tensorToVec (S.τ c)).hom.hom
({y | μ ⊗ S.metricTensor (S.τ c) | μ ν}ᵀ
2024-11-18 14:13:44 +00:00
|> perm (OverColor.equivToHomEq (Equiv.refl _) (fun x => by fin_cases x; rfl))).tensor := by
2024-11-18 13:58:22 +00:00
simp only
rw [toDualRep_apply_eq_contrOneTwoLeft]
apply congrArg
exact contrOneTwoLeft_tensorTree ((S.tensorToVec c).inv.hom x) (S.metricTensor (S.τ c))
lemma fromDualRep_tensorTree (c : S.C) (x : S.FD.obj (Discrete.mk (S.τ c))) :
let y : S.F.obj (OverColor.mk ![S.τ c]) := (S.tensorToVec (S.τ c)).inv.hom x
(S.fromDualRep c).hom x = (S.tensorToVec c).hom.hom
({y | μ ⊗ S.metricTensor (S.τ (S.τ c))| μ ν}ᵀ
|> perm (OverColor.equivToHomEq (Equiv.refl _)
2024-11-18 14:13:44 +00:00
(fun x => by fin_cases x; exact (S.τ_involution c).symm))).tensor := by
2024-11-18 13:58:22 +00:00
simp only
rw [fromDualRep]
simp only [Action.comp_hom, ModuleCat.coe_comp, Function.comp_apply, Nat.succ_eq_add_one,
Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero]
rw [toDualRep_tensorTree]
rw [tensorToVec_naturality_eqToHom_apply]
apply congrArg
conv_lhs =>
rw [← perm_tensor]
rw [perm_perm]
exact perm_congr rfl rfl
/-- Applying `toDualRep` followed by `fromDualRep` is equivalent to contracting
with two metric tensors on the right. -/
lemma toDualRep_fromDualRep_tensorTree_metrics (c : S.C) (x : S.FD.obj (Discrete.mk c)) :
let y : S.F.obj (OverColor.mk ![c]) := (S.tensorToVec c).inv.hom x
(S.fromDualRep c).hom ((S.toDualRep c).hom x) = (S.tensorToVec c).hom.hom
({y | μ ⊗ S.metricTensor (S.τ c) | μ ν ⊗ S.metricTensor (S.τ (S.τ c)) | ν σ}ᵀ
|> perm (OverColor.equivToHomEq (Equiv.refl _)
(fun x => by fin_cases x; exact (S.τ_involution c).symm))).tensor := by
rw [toDualRep_tensorTree, fromDualRep_tensorTree]
simp only
apply congrArg
rw [OverColor.Discrete.rep_iso_inv_hom_apply]
conv_lhs =>
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_fst <| tensorNode_of_tree _]
rw [perm_tensor_eq <| contr_tensor_eq <| prod_perm_left _ _ _ _]
2024-11-18 14:13:44 +00:00
rw [perm_tensor_eq <| perm_contr_congr 0 0 (by simp) (by
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero,
OverColor.mk_left, Functor.id_obj, OverColor.mk_hom, Equiv.refl_symm, Equiv.coe_refl,
Function.comp_apply, id_eq, Fin.zero_eta, List.pmap.eq_1, Matrix.cons_val_zero,
Fin.succ_zero_eq_one, Fin.succ_one_eq_two, OverColor.extractOne_homToEquiv,
permProdLeft_toEquiv, OverColor.equivToHomEq_toEquiv, Equiv.sumCongr_refl, Equiv.refl_trans,
Equiv.symm_trans_self, Equiv.refl_apply, HepLean.Fin.finExtractOnePerm_symm_apply,
HepLean.Fin.finExtractOne_symm_inr_apply, Fin.zero_succAbove]
decide)]
2024-11-18 13:58:22 +00:00
rw [perm_perm]
apply perm_congr _ rfl
apply OverColor.Hom.fin_ext
intro i
fin_cases i
simp only [OverColor.mk_left, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero,
Functor.id_obj, OverColor.mk_hom, Equiv.refl_symm, Equiv.coe_refl, Function.comp_apply, id_eq,
Fin.zero_eta, List.pmap.eq_1, Matrix.cons_val_zero, Fin.succ_zero_eq_one, Fin.succ_one_eq_two,
OverColor.extractOne_homToEquiv, HepLean.Fin.finExtractOnePerm_symm_apply, Category.assoc,
OverColor.Hom.hom_comp, Over.comp_left, OverColor.equivToHomEq_hom_left, Equiv.toFun_as_coe,
types_comp_apply, OverColor.mkIso_hom_hom_left_apply, OverColor.extractTwo_hom_left_apply,
permProdLeft_toEquiv, OverColor.equivToHomEq_toEquiv, Equiv.sumCongr_refl, Equiv.refl_trans,
Equiv.symm_trans_self, Equiv.refl_apply, HepLean.Fin.finExtractOne_symm_inr_apply,
Fin.zero_succAbove, HepLean.Fin.finExtractOnePerm_apply]
decide
/-- Applying `toDualRep` followed by `fromDualRep` is equivalent to contracting
with a unit tensors on the right. -/
lemma toDualRep_fromDualRep_tensorTree_unitTensor (c : S.C) (x : S.FD.obj (Discrete.mk c)) :
let y : S.F.obj (OverColor.mk ![c]) := (S.tensorToVec c).inv.hom x
(S.fromDualRep c).hom ((S.toDualRep c).hom x) = (S.tensorToVec c).hom.hom
({y | μ ⊗ S.unitTensor c | μ ν}ᵀ
|> perm (OverColor.equivToHomEq (Equiv.refl _)
(fun x => by fin_cases x; rfl))).tensor := by
rw [toDualRep_fromDualRep_tensorTree_metrics]
apply congrArg
conv_lhs =>
rw [perm_tensor_eq <| assoc_one_two_two _ _ _]
rw [perm_perm]
2024-11-18 14:13:44 +00:00
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_snd <|
metricTensor_contr_dual_metricTensor_eq_unit _]
2024-11-18 13:58:22 +00:00
rw [perm_tensor_eq <| contr_tensor_eq <| prod_perm_right _ _ _ _]
2024-11-18 14:13:44 +00:00
rw [perm_tensor_eq <| perm_contr_congr 0 1 (by
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, OverColor.mk_left, Functor.id_obj,
OverColor.mk_hom, permProdRight_toEquiv, OverColor.equivToHomEq_toEquiv,
Equiv.symm_trans_apply, Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm,
Equiv.sumCongr_apply, Equiv.coe_refl]
rfl) (by
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero,
OverColor.mk_left, Functor.id_obj, OverColor.mk_hom, OverColor.extractOne_homToEquiv,
permProdRight_toEquiv, OverColor.equivToHomEq_toEquiv, Equiv.symm_trans_apply,
Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply, Equiv.coe_refl,
HepLean.Fin.finExtractOnePerm_symm_apply, Equiv.trans_apply, Equiv.symm_apply_apply,
Sum.map_map, CompTriple.comp_eq, Equiv.self_comp_symm, Sum.map_id_id, id_eq,
Equiv.apply_symm_apply, HepLean.Fin.finExtractOne_symm_inr_apply, Fin.zero_succAbove,
Fin.succ_zero_eq_one]
rfl)]
2024-11-18 13:58:22 +00:00
rw [perm_perm]
conv_rhs =>
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_snd <| unitTensor_eq_dual_perm _]
rw [perm_tensor_eq <| contr_tensor_eq <| prod_perm_right _ _ _ _]
2024-11-18 14:13:44 +00:00
rw [perm_tensor_eq <| perm_contr_congr 0 1 (by
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, OverColor.mk_left, Functor.id_obj,
OverColor.mk_hom, permProdRight_toEquiv, OverColor.equivToHomEq_toEquiv,
Equiv.symm_trans_apply, Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm,
Equiv.sumCongr_apply, Equiv.coe_refl]
rfl) (by
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero,
OverColor.mk_left, Functor.id_obj, OverColor.mk_hom, Function.comp_apply,
HepLean.Fin.finMapToEquiv_symm_apply, Matrix.cons_val_zero, OverColor.extractOne_homToEquiv,
permProdRight_toEquiv, OverColor.equivToHomEq_toEquiv, Equiv.symm_trans_apply,
Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply, Equiv.coe_refl,
HepLean.Fin.finExtractOnePerm_symm_apply, Equiv.trans_apply, Equiv.symm_apply_apply,
Sum.map_map, CompTriple.comp_eq, Equiv.self_comp_symm, Sum.map_id_id, id_eq,
Equiv.apply_symm_apply, HepLean.Fin.finExtractOne_symm_inr_apply, Fin.zero_succAbove,
Fin.succ_zero_eq_one]
rfl)]
2024-11-18 13:58:22 +00:00
rw [perm_perm]
refine perm_congr (OverColor.Hom.fin_ext _ _ fun i => ?_) rfl
fin_cases i
simp only [OverColor.mk_left, Nat.succ_eq_add_one, Nat.reduceAdd, Functor.id_obj,
OverColor.mk_hom, Fin.isValue, Fin.succAbove_zero, OverColor.extractOne_homToEquiv,
HepLean.Fin.finExtractOnePerm_symm_apply, Category.assoc, OverColor.Hom.hom_comp, Fin.zero_eta,
Over.comp_left, OverColor.equivToHomEq_hom_left, Equiv.toFun_as_coe, Equiv.coe_refl,
types_comp_apply, OverColor.mkIso_hom_hom_left_apply, OverColor.extractTwo_hom_left_apply,
permProdRight_toEquiv, OverColor.equivToHomEq_toEquiv, Equiv.symm_trans_apply, Equiv.symm_symm,
Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply, Equiv.trans_apply,
Equiv.symm_apply_apply, Sum.map_map, CompTriple.comp_eq, Equiv.self_comp_symm, Sum.map_id_id,
id_eq, Equiv.apply_symm_apply, HepLean.Fin.finExtractOne_symm_inr_apply, Fin.zero_succAbove,
Fin.succ_zero_eq_one, HepLean.Fin.finExtractOnePerm_apply, Function.comp_apply,
HepLean.Fin.finMapToEquiv_symm_apply, Matrix.cons_val_zero]
lemma toDualRep_fromDualRep_tensorTree (c : S.C) (x : S.FD.obj (Discrete.mk c)) :
let y : S.F.obj (OverColor.mk ![c]) := (S.tensorToVec c).inv.hom x
(S.fromDualRep c).hom ((S.toDualRep c).hom x) = (S.tensorToVec c).hom.hom
({y | μ}ᵀ).tensor := by
rw [toDualRep_fromDualRep_tensorTree_unitTensor]
apply congrArg
conv_lhs =>
rw [perm_tensor_eq <| vec_contr_unitTensor_eq_self _]
rw [perm_perm]
rw [perm_eq_id]
2024-11-18 14:13:44 +00:00
lemma toDualRep_fromDualRep_eq_self (c : S.C) (x : S.FD.obj (Discrete.mk c)) :
2024-11-18 13:58:22 +00:00
(S.fromDualRep c).hom ((S.toDualRep c).hom x) = x := by
rw [toDualRep_fromDualRep_tensorTree]
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, tensorNode_tensor,
OverColor.Discrete.rep_iso_hom_inv_apply]
2024-11-18 14:13:44 +00:00
lemma fromDualRep_toDualRep_eq_self (c : S.C) (x : S.FD.obj (Discrete.mk (S.τ c))) :
2024-11-18 13:58:22 +00:00
(S.toDualRep c).hom ((S.fromDualRep c).hom x) = x := by
rw [S.toDualRep_congr (S.τ_involution c).symm, fromDualRep]
2024-11-18 14:13:44 +00:00
simp only [Action.comp_hom, ModuleCat.coe_comp, Function.comp_apply]
change (S.FD.map (Discrete.eqToHom _)).hom ((S.toDualRep (S.τ (S.τ c))).hom
2024-11-18 13:58:22 +00:00
(((S.FD.map (Discrete.eqToHom _)) ≫ S.FD.map (Discrete.eqToHom _)).hom
(((S.toDualRep (S.τ c)).hom x)))) = _
rw [← S.FD.map_comp]
2024-11-18 14:13:44 +00:00
simp only [eqToHom_trans, eqToHom_refl, Discrete.functor_map_id, Action.id_hom,
ModuleCat.id_apply]
2024-11-18 13:58:22 +00:00
conv_rhs => rw [← S.toDualRep_fromDualRep_eq_self (S.τ c) x]
rfl
/-- The isomorphism between the representation associated with a color, and that associated with
its dual. -/
def dualRepIsoDiscrete (c : S.C) : S.FD.obj (Discrete.mk c) ≅ S.FD.obj (Discrete.mk (S.τ c)) where
hom := S.toDualRep c
inv := S.fromDualRep c
hom_inv_id := by
ext x
exact S.toDualRep_fromDualRep_eq_self c x
inv_hom_id := by
ext x
exact S.fromDualRep_toDualRep_eq_self c x
informal_definition dualRepIso where
math :≈ "Given a `i : Fin n` the isomorphism between `S.F.obj (OverColor.mk c)` and
2024-11-18 14:13:44 +00:00
`S.F.obj (OverColor.mk (Function.update c i (S.τ (c i))))` induced by `dualRepIsoDiscrete`
acting on the `i`-th component of the color."
2024-11-18 13:58:22 +00:00
deps :≈ [``dualRepIsoDiscrete]
informal_lemma dualRepIso_unitTensor_fst where
math :≈ "Acting with `dualRepIso` on the fst component of a `unitTensor` returns a metric."
deps :≈ [``dualRepIso, ``unitTensor, ``metricTensor]
informal_lemma dualRepIso_unitTensor_snd where
math :≈ "Acting with `dualRepIso` on the snd component of a `unitTensor` returns a metric."
deps :≈ [``dualRepIso, ``unitTensor, ``metricTensor]
informal_lemma dualRepIso_metricTensor_fst where
math :≈ "Acting with `dualRepIso` on the fst component of a `metricTensor` returns a unitTensor."
deps :≈ [``dualRepIso, ``unitTensor, ``metricTensor]
informal_lemma dualRepIso_metricTensor_snd where
math :≈ "Acting with `dualRepIso` on the snd component of a `metricTensor` returns a unitTensor."
deps :≈ [``dualRepIso, ``unitTensor, ``metricTensor]
end TensorSpecies
end