PhysLean/HepLean/SpaceTime/LorentzTensor/EinsteinNotation/Basic.lean

115 lines
4.9 KiB
Text
Raw Normal View History

2024-08-15 13:52:50 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import Mathlib.LinearAlgebra.StdBasis
import HepLean.SpaceTime.LorentzTensor.Basic
import HepLean.SpaceTime.LorentzTensor.IndexNotation.Basic
2024-08-16 15:56:18 -04:00
import Mathlib.LinearAlgebra.DirectSum.Finsupp
import Mathlib.LinearAlgebra.Finsupp
2024-08-15 13:52:50 -04:00
/-!
# Einstein notation for real tensors
Einstein notation is a specific example of index notation, with only one color.
In this file we define Einstein notation for generic ring `R`.
-/
open TensorProduct
/-- Einstein tensors have only one color, corresponding to a `down` index. . -/
def einsteinTensorColor : TensorColor where
Color := Unit
τ a := a
τ_involutive μ := by rfl
instance : Fintype einsteinTensorColor.Color := Unit.fintype
instance : DecidableEq einsteinTensorColor.Color := instDecidableEqPUnit
2024-08-16 15:56:18 -04:00
variable {R : Type} [CommSemiring R]
2024-08-15 13:52:50 -04:00
/-- The `TensorStructure` associated with `n`-dimensional tensors. -/
noncomputable def einsteinTensor (R : Type) [CommSemiring R] (n : ) : TensorStructure R where
toTensorColor := einsteinTensorColor
ColorModule _ := Fin n → R
colorModule_addCommMonoid _ := Pi.addCommMonoid
colorModule_module _ := Pi.Function.module (Fin n) R R
contrDual _ := TensorProduct.lift (Fintype.total R R)
contrDual_symm a x y := by
simp only [lift.tmul, Fintype.total_apply, smul_eq_mul, mul_comm, Equiv.cast_refl,
Equiv.refl_apply]
unit a := ∑ i, Pi.basisFun R (Fin n) i ⊗ₜ[R] Pi.basisFun R (Fin n) i
unit_rid a x:= by
simp only [Pi.basisFun_apply]
rw [tmul_sum, map_sum]
trans ∑ i, x i • Pi.basisFun R (Fin n) i
· refine Finset.sum_congr rfl (fun i _ => ?_)
simp only [TensorStructure.contrLeftAux, LinearEquiv.refl_toLinearMap, LinearMap.coe_comp,
LinearEquiv.coe_coe, Function.comp_apply, assoc_symm_tmul, map_tmul, lift.tmul,
Fintype.total_apply, LinearMap.stdBasis_apply', smul_eq_mul, ite_mul, one_mul, zero_mul,
Finset.sum_ite_eq, Finset.mem_univ, ↓reduceIte, LinearMap.id_coe, id_eq, lid_tmul,
Pi.basisFun_apply]
· funext a
simp only [Pi.basisFun_apply, Finset.sum_apply, Pi.smul_apply, LinearMap.stdBasis_apply',
smul_eq_mul, mul_ite, mul_one, mul_zero, Finset.sum_ite_eq', Finset.mem_univ, ↓reduceIte]
metric a := ∑ i, Pi.basisFun R (Fin n) i ⊗ₜ[R] Pi.basisFun R (Fin n) i
metric_dual a := by
simp only [Pi.basisFun_apply, map_sum, comm_tmul]
rw [tmul_sum, map_sum]
refine Finset.sum_congr rfl (fun i _ => ?_)
rw [sum_tmul, map_sum, Fintype.sum_eq_single i]
· simp only [TensorStructure.contrMidAux, LinearEquiv.refl_toLinearMap,
TensorStructure.contrLeftAux, LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply,
assoc_tmul, map_tmul, LinearMap.id_coe, id_eq, assoc_symm_tmul, lift.tmul,
Fintype.total_apply, LinearMap.stdBasis_apply', smul_eq_mul, mul_ite, mul_one, mul_zero,
Finset.sum_ite_eq, Finset.mem_univ, ↓reduceIte, lid_tmul, one_smul]
· intro x hi
simp only [TensorStructure.contrMidAux, LinearEquiv.refl_toLinearMap,
TensorStructure.contrLeftAux, LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply,
assoc_tmul, map_tmul, LinearMap.id_coe, id_eq, assoc_symm_tmul, lift.tmul,
Fintype.total_apply, LinearMap.stdBasis_apply', smul_eq_mul, mul_ite, mul_one, mul_zero,
Finset.sum_ite_eq, Finset.mem_univ, ↓reduceIte, lid_tmul, ite_smul, one_smul, zero_smul]
rw [if_neg]
simp only [tmul_zero]
exact id (Ne.symm hi)
2024-08-16 15:56:18 -04:00
namespace einsteinTensor
open TensorStructure
noncomputable section
instance : OfNat einsteinTensorColor.Color 0 := ⟨PUnit.unit⟩
instance : OfNat (einsteinTensor R n).Color 0 := ⟨PUnit.unit⟩
@[simp]
lemma ofNat_inst_eq : @einsteinTensor.instOfNatColorOfNatNat R _ n =
einsteinTensor.instOfNatColorEinsteinTensorColorOfNatNat := rfl
/-- A vector from an Einstein tensor with one index. -/
def toVec : (einsteinTensor R n).Tensor ![Unit.unit] ≃ₗ[R] Fin n → R :=
PiTensorProduct.subsingletonEquiv 0
/-- A matrix from an Einstein tensor with two indices. -/
def toMatrix : (einsteinTensor R n).Tensor ![Unit.unit, Unit.unit] ≃ₗ[R] Matrix (Fin n) (Fin n) R :=
((einsteinTensor R n).mapIso ((Fin.castOrderIso
(by rfl : (Nat.succ 0).succ = Nat.succ 0 + Nat.succ 0)).toEquiv.trans
finSumFinEquiv.symm) (by funext x; fin_cases x; rfl; rfl)).trans <|
((einsteinTensor R n).tensoratorEquiv ![0] ![0]).symm.trans <|
(TensorProduct.congr ((PiTensorProduct.subsingletonEquiv 0))
((PiTensorProduct.subsingletonEquiv 0))).trans <|
(TensorProduct.congr (Finsupp.linearEquivFunOnFinite R R (Fin n)).symm
(Finsupp.linearEquivFunOnFinite R R (Fin n)).symm).trans <|
(finsuppTensorFinsupp' R (Fin n) (Fin n)).trans <|
(Finsupp.linearEquivFunOnFinite R R (Fin n × Fin n)).trans <|
(LinearEquiv.curry R (Fin n) (Fin n))
end
end einsteinTensor