PhysLean/HepLean/AnomalyCancellation/MSSMNu/Permutations.lean

141 lines
4.3 KiB
Text
Raw Normal View History

2024-04-17 16:23:40 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.MSSMNu.Basic
import Mathlib.Tactic.Polyrith
2024-06-25 07:06:32 -04:00
import Mathlib.RepresentationTheory.Basic
2024-04-17 16:23:40 -04:00
/-!
# Permutations of MSSM charges and solutions
The three family MSSM charges has a family permutation of S₃⁶. This file defines this group
and its action on the MSSM.
-/
2024-04-17 16:26:43 -04:00
universe v u
2024-04-17 16:23:40 -04:00
open Nat
open Finset
namespace MSSM
open MSSMCharges
open MSSMACCs
open BigOperators
/-- The group of family permutations is `S₃⁶`-/
@[simp]
def PermGroup := Fin 6 → Equiv.Perm (Fin 3)
2024-04-17 16:23:40 -04:00
@[simp]
instance : Group PermGroup := Pi.group
2024-04-17 16:23:40 -04:00
/-- The image of an element of `permGroup` under the representation on charges. -/
@[simps!]
def chargeMap (f : PermGroup) : MSSMCharges.Charges →ₗ[] MSSMCharges.Charges where
2024-04-17 16:23:40 -04:00
toFun S := toSpecies.symm (fun i => toSMSpecies i S ∘ f i, Prod.snd (toSpecies S))
map_add' S T := by
simp only
rw [charges_eq_toSpecies_eq]
2024-06-13 16:49:01 -04:00
refine And.intro ?_ $ Prod.mk.inj_iff.mp rfl
2024-04-17 16:23:40 -04:00
intro i
rw [(toSMSpecies i).map_add]
rw [toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv]
rfl
map_smul' a S := by
simp only
rw [charges_eq_toSpecies_eq]
2024-06-13 16:49:01 -04:00
apply And.intro ?_ $ Prod.mk.inj_iff.mp rfl
2024-04-17 16:23:40 -04:00
intro i
rw [(toSMSpecies i).map_smul, toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv]
rfl
lemma chargeMap_toSpecies (f : PermGroup) (S : MSSMCharges.Charges) (j : Fin 6) :
2024-04-17 16:23:40 -04:00
toSMSpecies j (chargeMap f S) = toSMSpecies j S ∘ f j := by
erw [toSMSpecies_toSpecies_inv]
/-- The representation of `permGroup` acting on the vector space of charges. -/
@[simp]
def repCharges : Representation PermGroup (MSSMCharges).Charges where
2024-04-17 16:23:40 -04:00
toFun f := chargeMap f⁻¹
map_mul' f g :=by
simp only [PermGroup, mul_inv_rev]
2024-04-17 16:23:40 -04:00
apply LinearMap.ext
intro S
rw [charges_eq_toSpecies_eq]
2024-06-13 16:49:01 -04:00
refine And.intro ?_ $ Prod.mk.inj_iff.mp rfl
2024-04-17 16:23:40 -04:00
intro i
simp only [ Pi.mul_apply, Pi.inv_apply, Equiv.Perm.coe_mul, LinearMap.mul_apply]
rw [chargeMap_toSpecies, chargeMap_toSpecies]
simp only [Pi.mul_apply, Pi.inv_apply]
rw [chargeMap_toSpecies]
rfl
map_one' := by
apply LinearMap.ext
intro S
rw [charges_eq_toSpecies_eq]
2024-06-13 16:49:01 -04:00
refine And.intro ?_ $ Prod.mk.inj_iff.mp rfl
2024-04-17 16:23:40 -04:00
intro i
erw [toSMSpecies_toSpecies_inv]
rfl
lemma repCharges_toSMSpecies (f : PermGroup) (S : MSSMCharges.Charges) (j : Fin 6) :
2024-04-17 16:23:40 -04:00
toSMSpecies j (repCharges f S) = toSMSpecies j S ∘ f⁻¹ j := by
erw [toSMSpecies_toSpecies_inv]
lemma toSpecies_sum_invariant (m : ) (f : PermGroup) (S : MSSMCharges.Charges) (j : Fin 6) :
2024-04-17 16:23:40 -04:00
∑ i, ((fun a => a ^ m) ∘ toSMSpecies j (repCharges f S)) i =
∑ i, ((fun a => a ^ m) ∘ toSMSpecies j S) i := by
2024-06-13 16:49:01 -04:00
rw [repCharges_toSMSpecies]
exact Equiv.sum_comp (f⁻¹ j) ((fun a => a ^ m) ∘ (toSMSpecies j) S)
2024-04-17 16:23:40 -04:00
lemma Hd_invariant (f : PermGroup) (S : MSSMCharges.Charges) :
2024-04-17 16:23:40 -04:00
Hd (repCharges f S) = Hd S := rfl
lemma Hu_invariant (f : PermGroup) (S : MSSMCharges.Charges) :
2024-04-17 16:23:40 -04:00
Hu (repCharges f S) = Hu S := rfl
lemma accGrav_invariant (f : PermGroup) (S : MSSMCharges.Charges) :
2024-04-17 16:23:40 -04:00
accGrav (repCharges f S) = accGrav S :=
accGrav_ext
(by simpa using toSpecies_sum_invariant 1 f S)
(Hd_invariant f S)
(Hu_invariant f S)
lemma accSU2_invariant (f : PermGroup) (S : MSSMCharges.Charges) :
2024-04-17 16:23:40 -04:00
accSU2 (repCharges f S) = accSU2 S :=
accSU2_ext
(by simpa using toSpecies_sum_invariant 1 f S)
(Hd_invariant f S)
(Hu_invariant f S)
lemma accSU3_invariant (f : PermGroup) (S : MSSMCharges.Charges) :
2024-04-17 16:23:40 -04:00
accSU3 (repCharges f S) = accSU3 S :=
accSU3_ext
(by simpa using toSpecies_sum_invariant 1 f S)
lemma accYY_invariant (f : PermGroup) (S : MSSMCharges.Charges) :
2024-04-17 16:23:40 -04:00
accYY (repCharges f S) = accYY S :=
accYY_ext
(by simpa using toSpecies_sum_invariant 1 f S)
(Hd_invariant f S)
(Hu_invariant f S)
lemma accQuad_invariant (f : PermGroup) (S : MSSMCharges.Charges) :
2024-04-17 16:23:40 -04:00
accQuad (repCharges f S) = accQuad S :=
accQuad_ext
(toSpecies_sum_invariant 2 f S)
(Hd_invariant f S)
(Hu_invariant f S)
lemma accCube_invariant (f : PermGroup) (S : MSSMCharges.Charges) :
2024-04-17 16:23:40 -04:00
accCube (repCharges f S) = accCube S :=
accCube_ext
2024-06-13 16:49:01 -04:00
(fun j => toSpecies_sum_invariant 3 f S j)
2024-04-17 16:23:40 -04:00
(Hd_invariant f S)
(Hu_invariant f S)
end MSSM