2024-04-18 11:30:10 -04:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license.
|
|
|
|
|
Authors: Joseph Tooby-Smith
|
|
|
|
|
-/
|
|
|
|
|
import HepLean.AnomalyCancellation.PureU1.Basic
|
|
|
|
|
import HepLean.AnomalyCancellation.PureU1.ConstAbs
|
|
|
|
|
import HepLean.AnomalyCancellation.PureU1.Even.BasisLinear
|
|
|
|
|
import HepLean.AnomalyCancellation.PureU1.LineInPlaneCond
|
|
|
|
|
import HepLean.AnomalyCancellation.PureU1.Permutations
|
|
|
|
|
import Mathlib.RepresentationTheory.Basic
|
|
|
|
|
import Mathlib.Tactic.Polyrith
|
|
|
|
|
/-!
|
|
|
|
|
|
|
|
|
|
# Line In Cubic Even case
|
|
|
|
|
|
|
|
|
|
We say that a linear solution satisfies the `lineInCubic` property
|
2024-05-21 14:08:19 +02:00
|
|
|
|
if the line through that point and through the two different planes formed by the basis of
|
2024-04-18 11:30:10 -04:00
|
|
|
|
`LinSols` lies in the cubic.
|
|
|
|
|
|
2024-05-21 14:08:19 +02:00
|
|
|
|
We show that for a solution all its permutations satisfy this property, then there exists
|
2024-04-18 11:30:10 -04:00
|
|
|
|
a permutation for which it lies in the plane spanned by the first part of the basis.
|
|
|
|
|
|
|
|
|
|
The main reference for this file is:
|
|
|
|
|
|
|
|
|
|
- https://arxiv.org/pdf/1912.04804.pdf
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
namespace PureU1
|
|
|
|
|
namespace Even
|
|
|
|
|
|
|
|
|
|
open BigOperators
|
|
|
|
|
|
|
|
|
|
variable {n : ℕ}
|
|
|
|
|
open VectorLikeEvenPlane
|
|
|
|
|
|
2024-05-21 14:08:19 +02:00
|
|
|
|
/-- A property on `LinSols`, satisfied if every point on the line between the two planes
|
2024-04-18 11:30:10 -04:00
|
|
|
|
in the basis through that point is in the cubic. -/
|
2024-06-26 11:54:02 -04:00
|
|
|
|
def LineInCubic (S : (PureU1 (2 * n.succ)).LinSols) : Prop :=
|
2024-04-18 11:30:10 -04:00
|
|
|
|
∀ (g : Fin n.succ → ℚ) (f : Fin n → ℚ) (_ : S.val = Pa g f) (a b : ℚ) ,
|
|
|
|
|
accCube (2 * n.succ) (a • P g + b • P! f) = 0
|
|
|
|
|
|
2024-06-26 11:54:02 -04:00
|
|
|
|
lemma lineInCubic_expand {S : (PureU1 (2 * n.succ)).LinSols} (h : LineInCubic S) :
|
2024-04-18 11:30:10 -04:00
|
|
|
|
∀ (g : Fin n.succ → ℚ) (f : Fin n → ℚ) (_ : S.val = Pa g f) (a b : ℚ) ,
|
2024-04-22 09:48:44 -04:00
|
|
|
|
3 * a * b * (a * accCubeTriLinSymm (P g) (P g) (P! f)
|
|
|
|
|
+ b * accCubeTriLinSymm (P! f) (P! f) (P g)) = 0 := by
|
2024-04-18 11:30:10 -04:00
|
|
|
|
intro g f hS a b
|
|
|
|
|
have h1 := h g f hS a b
|
|
|
|
|
change accCubeTriLinSymm.toCubic (a • P g + b • P! f) = 0 at h1
|
|
|
|
|
simp only [TriLinearSymm.toCubic_add] at h1
|
|
|
|
|
simp only [HomogeneousCubic.map_smul,
|
|
|
|
|
accCubeTriLinSymm.map_smul₁, accCubeTriLinSymm.map_smul₂, accCubeTriLinSymm.map_smul₃] at h1
|
|
|
|
|
erw [P_accCube, P!_accCube] at h1
|
|
|
|
|
rw [← h1]
|
|
|
|
|
ring
|
|
|
|
|
|
|
|
|
|
/--
|
|
|
|
|
This lemma states that for a given `S` of type `(PureU1 (2 * n.succ)).AnomalyFreeLinear` and
|
|
|
|
|
a proof `h` that the line through `S` lies on a cubic curve,
|
|
|
|
|
for any functions `g : Fin n.succ → ℚ` and `f : Fin n → ℚ`, if `S.val = P g + P! f`,
|
|
|
|
|
then `accCubeTriLinSymm.toFun (P g, P g, P! f) = 0`.
|
|
|
|
|
-/
|
2024-06-26 11:54:02 -04:00
|
|
|
|
lemma line_in_cubic_P_P_P! {S : (PureU1 (2 * n.succ)).LinSols} (h : LineInCubic S) :
|
2024-04-18 11:31:17 -04:00
|
|
|
|
∀ (g : Fin n.succ → ℚ) (f : Fin n → ℚ) (_ : S.val = P g + P! f),
|
2024-04-22 09:48:44 -04:00
|
|
|
|
accCubeTriLinSymm (P g) (P g) (P! f) = 0 := by
|
2024-04-18 11:30:10 -04:00
|
|
|
|
intro g f hS
|
|
|
|
|
linear_combination 2 / 3 * (lineInCubic_expand h g f hS 1 1) -
|
|
|
|
|
(lineInCubic_expand h g f hS 1 2) / 6
|
|
|
|
|
|
2024-05-20 00:19:21 +02:00
|
|
|
|
/-- We say a `LinSol` satisfies `lineInCubicPerm` if all its permutations satisfy `lineInCubic`. -/
|
2024-06-26 11:54:02 -04:00
|
|
|
|
def LineInCubicPerm (S : (PureU1 (2 * n.succ)).LinSols) : Prop :=
|
2024-04-18 11:30:10 -04:00
|
|
|
|
∀ (M : (FamilyPermutations (2 * n.succ)).group ),
|
2024-06-26 11:54:02 -04:00
|
|
|
|
LineInCubic ((FamilyPermutations (2 * n.succ)).linSolRep M S)
|
2024-04-18 11:30:10 -04:00
|
|
|
|
|
|
|
|
|
/-- If `lineInCubicPerm S` then `lineInCubic S`. -/
|
|
|
|
|
lemma lineInCubicPerm_self {S : (PureU1 (2 * n.succ)).LinSols}
|
2024-06-26 11:54:02 -04:00
|
|
|
|
(hS : LineInCubicPerm S) : LineInCubic S := hS 1
|
2024-04-18 11:30:10 -04:00
|
|
|
|
|
|
|
|
|
/-- If `lineInCubicPerm S` then `lineInCubicPerm (M S)` for all permutations `M`. -/
|
|
|
|
|
lemma lineInCubicPerm_permute {S : (PureU1 (2 * n.succ)).LinSols}
|
2024-06-26 11:54:02 -04:00
|
|
|
|
(hS : LineInCubicPerm S) (M' : (FamilyPermutations (2 * n.succ)).group) :
|
|
|
|
|
LineInCubicPerm ((FamilyPermutations (2 * n.succ)).linSolRep M' S) := by
|
|
|
|
|
rw [LineInCubicPerm]
|
2024-04-18 11:30:10 -04:00
|
|
|
|
intro M
|
2024-06-26 11:54:02 -04:00
|
|
|
|
change LineInCubic
|
2024-04-18 11:31:17 -04:00
|
|
|
|
(((FamilyPermutations (2 * n.succ)).linSolRep M *
|
|
|
|
|
(FamilyPermutations (2 * n.succ)).linSolRep M') S)
|
2024-04-18 11:30:10 -04:00
|
|
|
|
erw [← (FamilyPermutations (2 * n.succ)).linSolRep.map_mul M M']
|
|
|
|
|
exact hS (M * M')
|
|
|
|
|
|
|
|
|
|
lemma lineInCubicPerm_swap {S : (PureU1 (2 * n.succ)).LinSols}
|
2024-06-26 11:54:02 -04:00
|
|
|
|
(LIC : LineInCubicPerm S) :
|
2024-04-18 11:30:10 -04:00
|
|
|
|
∀ (j : Fin n) (g : Fin n.succ → ℚ) (f : Fin n → ℚ) (_ : S.val = Pa g f) ,
|
|
|
|
|
(S.val (δ!₂ j) - S.val (δ!₁ j))
|
2024-04-22 09:48:44 -04:00
|
|
|
|
* accCubeTriLinSymm (P g) (P g) (basis!AsCharges j) = 0 := by
|
2024-04-18 11:30:10 -04:00
|
|
|
|
intro j g f h
|
|
|
|
|
let S' := (FamilyPermutations (2 * n.succ)).linSolRep (pairSwap (δ!₁ j) (δ!₂ j)) S
|
|
|
|
|
have hSS' : ((FamilyPermutations (2 * n.succ)).linSolRep (pairSwap (δ!₁ j) (δ!₂ j))) S = S' := rfl
|
|
|
|
|
obtain ⟨g', f', hall⟩ := span_basis_swap! j hSS' g f h
|
|
|
|
|
have h1 := line_in_cubic_P_P_P! (lineInCubicPerm_self LIC) g f h
|
|
|
|
|
have h2 := line_in_cubic_P_P_P!
|
|
|
|
|
(lineInCubicPerm_self (lineInCubicPerm_permute LIC (pairSwap (δ!₁ j) (δ!₂ j)))) g' f' hall.1
|
|
|
|
|
rw [hall.2.1, hall.2.2] at h2
|
|
|
|
|
rw [accCubeTriLinSymm.map_add₃, h1, accCubeTriLinSymm.map_smul₃] at h2
|
|
|
|
|
simpa using h2
|
|
|
|
|
|
|
|
|
|
lemma P_P_P!_accCube' {S : (PureU1 (2 * n.succ.succ )).LinSols}
|
2024-04-18 11:31:17 -04:00
|
|
|
|
(f : Fin n.succ.succ → ℚ) (g : Fin n.succ → ℚ) (hS : S.val = Pa f g) :
|
2024-04-22 09:48:44 -04:00
|
|
|
|
accCubeTriLinSymm (P f) (P f) (basis!AsCharges (Fin.last n)) =
|
2024-04-18 11:30:10 -04:00
|
|
|
|
- (S.val (δ!₂ (Fin.last n)) + S.val (δ!₁ (Fin.last n))) * (2 * S.val δ!₄ +
|
2024-04-18 11:31:17 -04:00
|
|
|
|
S.val (δ!₂ (Fin.last n)) + S.val (δ!₁ (Fin.last n))) := by
|
2024-04-18 11:30:10 -04:00
|
|
|
|
rw [P_P_P!_accCube f (Fin.last n)]
|
|
|
|
|
have h1 := Pa_δ!₄ f g
|
|
|
|
|
have h2 := Pa_δ!₁ f g (Fin.last n)
|
|
|
|
|
have h3 := Pa_δ!₂ f g (Fin.last n)
|
|
|
|
|
simp at h1 h2 h3
|
|
|
|
|
have hl : f (Fin.succ (Fin.last (n ))) = - Pa f g δ!₄ := by
|
|
|
|
|
simp_all only [Fin.succ_last, neg_neg]
|
|
|
|
|
erw [hl] at h2
|
|
|
|
|
have hg : g (Fin.last n) = Pa f g (δ!₁ (Fin.last n)) + Pa f g δ!₄ := by
|
|
|
|
|
linear_combination -(1 * h2)
|
|
|
|
|
have hll : f (Fin.castSucc (Fin.last (n ))) =
|
|
|
|
|
- (Pa f g (δ!₂ (Fin.last n)) + Pa f g (δ!₁ (Fin.last n)) + Pa f g δ!₄) := by
|
|
|
|
|
linear_combination h3 - 1 * hg
|
|
|
|
|
rw [← hS] at hl hll
|
|
|
|
|
rw [hl, hll]
|
|
|
|
|
ring
|
|
|
|
|
|
|
|
|
|
lemma lineInCubicPerm_last_cond {S : (PureU1 (2 * n.succ.succ)).LinSols}
|
2024-06-26 11:54:02 -04:00
|
|
|
|
(LIC : LineInCubicPerm S) :
|
|
|
|
|
LineInPlaneProp
|
2024-04-18 11:30:10 -04:00
|
|
|
|
((S.val (δ!₂ (Fin.last n))), ((S.val (δ!₁ (Fin.last n))), (S.val δ!₄))) := by
|
|
|
|
|
obtain ⟨g, f, hfg⟩ := span_basis S
|
|
|
|
|
have h1 := lineInCubicPerm_swap LIC (Fin.last n) g f hfg
|
|
|
|
|
rw [P_P_P!_accCube' g f hfg] at h1
|
|
|
|
|
simp at h1
|
|
|
|
|
cases h1 <;> rename_i h1
|
|
|
|
|
apply Or.inl
|
|
|
|
|
linear_combination h1
|
|
|
|
|
cases h1 <;> rename_i h1
|
|
|
|
|
apply Or.inr
|
|
|
|
|
apply Or.inl
|
|
|
|
|
linear_combination -(1 * h1)
|
|
|
|
|
apply Or.inr
|
|
|
|
|
apply Or.inr
|
|
|
|
|
exact h1
|
|
|
|
|
|
|
|
|
|
lemma lineInCubicPerm_last_perm {S : (PureU1 (2 * n.succ.succ)).LinSols}
|
2024-06-26 11:54:02 -04:00
|
|
|
|
(LIC : LineInCubicPerm S) : LineInPlaneCond S := by
|
|
|
|
|
refine @Prop_three (2 * n.succ.succ) LineInPlaneProp S (δ!₂ (Fin.last n)) (δ!₁ (Fin.last n))
|
2024-04-18 11:30:10 -04:00
|
|
|
|
δ!₄ ?_ ?_ ?_ ?_
|
|
|
|
|
simp [Fin.ext_iff, δ!₂, δ!₁]
|
|
|
|
|
simp [Fin.ext_iff, δ!₂, δ!₄]
|
|
|
|
|
simp [Fin.ext_iff, δ!₁, δ!₄]
|
|
|
|
|
omega
|
|
|
|
|
intro M
|
|
|
|
|
exact lineInCubicPerm_last_cond (lineInCubicPerm_permute LIC M)
|
|
|
|
|
|
|
|
|
|
lemma lineInCubicPerm_constAbs {S : (PureU1 (2 * n.succ.succ)).Sols}
|
2024-06-26 11:54:02 -04:00
|
|
|
|
(LIC : LineInCubicPerm S.1.1) : ConstAbs S.val :=
|
2024-04-18 11:30:10 -04:00
|
|
|
|
linesInPlane_constAbs_AF S (lineInCubicPerm_last_perm LIC)
|
|
|
|
|
|
|
|
|
|
theorem lineInCubicPerm_vectorLike {S : (PureU1 (2 * n.succ.succ)).Sols}
|
2024-06-26 11:54:02 -04:00
|
|
|
|
(LIC : LineInCubicPerm S.1.1) : VectorLikeEven S.val :=
|
2024-04-18 11:30:10 -04:00
|
|
|
|
ConstAbs.boundary_value_even S.1.1 (lineInCubicPerm_constAbs LIC)
|
|
|
|
|
|
|
|
|
|
theorem lineInCubicPerm_in_plane (S : (PureU1 (2 * n.succ.succ)).Sols)
|
2024-06-26 11:54:02 -04:00
|
|
|
|
(LIC : LineInCubicPerm S.1.1) : ∃ (M : (FamilyPermutations (2 * n.succ.succ)).group),
|
2024-04-18 11:30:10 -04:00
|
|
|
|
(FamilyPermutations (2 * n.succ.succ)).linSolRep M S.1.1
|
|
|
|
|
∈ Submodule.span ℚ (Set.range basis) :=
|
|
|
|
|
vectorLikeEven_in_span S.1.1 (lineInCubicPerm_vectorLike LIC)
|
|
|
|
|
|
|
|
|
|
end Even
|
|
|
|
|
end PureU1
|