PhysLean/HepLean/AnomalyCancellation/PureU1/Even/Parameterization.lean

174 lines
6.7 KiB
Text
Raw Normal View History

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.PureU1.Basic
import HepLean.AnomalyCancellation.PureU1.ConstAbs
import HepLean.AnomalyCancellation.PureU1.LineInPlaneCond
import HepLean.AnomalyCancellation.PureU1.Even.BasisLinear
import HepLean.AnomalyCancellation.PureU1.Even.LineInCubic
import HepLean.AnomalyCancellation.PureU1.Permutations
import Mathlib.RepresentationTheory.Basic
import Mathlib.Tactic.Polyrith
/-!
# Parameterization in even case
Given maps `g : Fin n.succ → `, `f : Fin n → ` and `a : ` we form a solution to the anomaly
equations. We show that every solution can be got in this way, up to permutation, unless it, up to
2024-05-21 14:10:56 +02:00
permutation, lives in the plane spanned by the first part of the basis vector.
The main reference is:
- https://arxiv.org/pdf/1912.04804.pdf
-/
namespace PureU1
namespace Even
open BigOperators
variable {n : }
open VectorLikeEvenPlane
2024-05-21 14:10:56 +02:00
/-- Given coefficients `g` of a point in `P` and `f` of a point in `P!`, and a rational, we get a
rational `a ∈ `, we get a
point in `(PureU1 (2 * n.succ)).AnomalyFreeLinear`, which we will later show extends to an anomaly
free point. -/
def parameterizationAsLinear (g : Fin n.succ → ) (f : Fin n → ) (a : ) :
(PureU1 (2 * n.succ)).LinSols :=
a • ((accCubeTriLinSymm (P! f) (P! f) (P g)) • P' g +
(- accCubeTriLinSymm (P g) (P g) (P! f)) • P!' f)
lemma parameterizationAsLinear_val (g : Fin n.succ → ) (f : Fin n → ) (a : ) :
(parameterizationAsLinear g f a).val =
a • ((accCubeTriLinSymm (P! f) (P! f) (P g)) • P g +
(- accCubeTriLinSymm (P g) (P g) (P! f)) • P! f) := by
rw [parameterizationAsLinear]
change a • (_ • (P' g).val + _ • (P!' f).val) = _
rw [P'_val, P!'_val]
lemma parameterizationCharge_cube (g : Fin n.succ → ) (f : Fin n → ) (a : ):
accCube (2* n.succ) (parameterizationAsLinear g f a).val = 0 := by
change accCubeTriLinSymm.toCubic _ = 0
rw [parameterizationAsLinear_val, HomogeneousCubic.map_smul,
TriLinearSymm.toCubic_add, HomogeneousCubic.map_smul, HomogeneousCubic.map_smul]
erw [P_accCube, P!_accCube]
rw [accCubeTriLinSymm.map_smul₁, accCubeTriLinSymm.map_smul₂,
accCubeTriLinSymm.map_smul₃, accCubeTriLinSymm.map_smul₁, accCubeTriLinSymm.map_smul₂,
accCubeTriLinSymm.map_smul₃]
ring
/-- The construction of a `Sol` from a `Fin n.succ → `, a `Fin n → ` and a ``. -/
def parameterization (g : Fin n.succ → ) (f : Fin n → ) (a : ) :
(PureU1 (2 * n.succ)).Sols :=
⟨⟨parameterizationAsLinear g f a, by intro i; simp at i; exact Fin.elim0 i⟩,
parameterizationCharge_cube g f a⟩
lemma anomalyFree_param {S : (PureU1 (2 * n.succ)).Sols}
(g : Fin n.succ → ) (f : Fin n → ) (hS : S.val = P g + P! f) :
accCubeTriLinSymm (P g) (P g) (P! f) = - accCubeTriLinSymm (P! f) (P! f) (P g) := by
have hC := S.cubicSol
rw [hS] at hC
change (accCube (2 * n.succ)) (P g + P! f) = 0 at hC
erw [TriLinearSymm.toCubic_add] at hC
erw [P_accCube] at hC
erw [P!_accCube] at hC
linear_combination hC / 3
/-- A proposition on a solution which is true if `accCubeTriLinSymm (P g, P g, P! f) ≠ 0`.
In this case our parameterization above will be able to recover this point. -/
def GenericCase (S : (PureU1 (2 * n.succ)).Sols) : Prop :=
∀ (g : Fin n.succ → ) (f : Fin n → ) (_ : S.val = P g + P! f) ,
accCubeTriLinSymm (P g) (P g) (P! f) ≠ 0
lemma genericCase_exists (S : (PureU1 (2 * n.succ)).Sols)
(hs : ∃ (g : Fin n.succ → ) (f : Fin n → ), S.val = P g + P! f ∧
accCubeTriLinSymm (P g) (P g) (P! f) ≠ 0) : GenericCase S := by
intro g f hS hC
obtain ⟨g', f', hS', hC'⟩ := hs
rw [hS] at hS'
erw [Pa_eq] at hS'
rw [hS'.1, hS'.2] at hC
exact hC' hC
/-- A proposition on a solution which is true if `accCubeTriLinSymm (P g, P g, P! f) = 0`.-/
def SpecialCase (S : (PureU1 (2 * n.succ)).Sols) : Prop :=
∀ (g : Fin n.succ → ) (f : Fin n → ) (_ : S.val = P g + P! f) ,
accCubeTriLinSymm (P g) (P g) (P! f) = 0
lemma specialCase_exists (S : (PureU1 (2 * n.succ)).Sols)
(hs : ∃ (g : Fin n.succ → ) (f : Fin n → ), S.val = P g + P! f ∧
accCubeTriLinSymm (P g) (P g) (P! f) = 0) : SpecialCase S := by
intro g f hS
obtain ⟨g', f', hS', hC'⟩ := hs
rw [hS] at hS'
erw [Pa_eq] at hS'
rw [hS'.1, hS'.2]
exact hC'
lemma generic_or_special (S : (PureU1 (2 * n.succ)).Sols) :
GenericCase S SpecialCase S := by
obtain ⟨g, f, h⟩ := span_basis S.1.1
have h1 : accCubeTriLinSymm (P g) (P g) (P! f) ≠ 0
accCubeTriLinSymm (P g) (P g) (P! f) = 0 := by
exact ne_or_eq _ _
cases h1 <;> rename_i h1
exact Or.inl (genericCase_exists S ⟨g, f, h, h1⟩)
exact Or.inr (specialCase_exists S ⟨g, f, h, h1⟩)
theorem generic_case {S : (PureU1 (2 * n.succ)).Sols} (h : GenericCase S) :
2024-04-18 11:44:06 -04:00
∃ g f a, S = parameterization g f a := by
obtain ⟨g, f, hS⟩ := span_basis S.1.1
use g, f, (accCubeTriLinSymm (P! f) (P! f) (P g))⁻¹
rw [parameterization]
apply ACCSystem.Sols.ext
rw [parameterizationAsLinear_val]
change S.val = _ • ( _ • P g + _• P! f)
rw [anomalyFree_param _ _ hS]
rw [neg_neg, ← smul_add, smul_smul, inv_mul_cancel, one_smul]
exact hS
have h := h g f hS
rw [anomalyFree_param _ _ hS] at h
simp at h
exact h
lemma special_case_lineInCubic {S : (PureU1 (2 * n.succ)).Sols}
(h : SpecialCase S) : LineInCubic S.1.1 := by
intro g f hS a b
erw [TriLinearSymm.toCubic_add]
rw [HomogeneousCubic.map_smul, HomogeneousCubic.map_smul]
erw [P_accCube, P!_accCube]
have h := h g f hS
rw [accCubeTriLinSymm.map_smul₁, accCubeTriLinSymm.map_smul₂,
accCubeTriLinSymm.map_smul₃, accCubeTriLinSymm.map_smul₁, accCubeTriLinSymm.map_smul₂,
accCubeTriLinSymm.map_smul₃]
rw [h]
rw [anomalyFree_param _ _ hS] at h
simp at h
change accCubeTriLinSymm (P! f) (P! f) (P g) = 0 at h
erw [h]
simp
lemma special_case_lineInCubic_perm {S : (PureU1 (2 * n.succ)).Sols}
(h : ∀ (M : (FamilyPermutations (2 * n.succ)).group),
SpecialCase ((FamilyPermutations (2 * n.succ)).solAction.toFun S M)) :
LineInCubicPerm S.1.1 := by
intro M
exact special_case_lineInCubic (h M)
theorem special_case {S : (PureU1 (2 * n.succ.succ)).Sols}
(h : ∀ (M : (FamilyPermutations (2 * n.succ.succ)).group),
SpecialCase ((FamilyPermutations (2 * n.succ.succ)).solAction.toFun S M)) :
∃ (M : (FamilyPermutations (2 * n.succ.succ)).group),
((FamilyPermutations (2 * n.succ.succ)).solAction.toFun S M).1.1
∈ Submodule.span (Set.range basis) :=
lineInCubicPerm_in_plane S (special_case_lineInCubic_perm h)
end Even
end PureU1