2024-04-18 11:42:53 -04:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license.
|
|
|
|
|
Authors: Joseph Tooby-Smith
|
|
|
|
|
-/
|
|
|
|
|
import HepLean.AnomalyCancellation.PureU1.Basic
|
|
|
|
|
import HepLean.AnomalyCancellation.PureU1.ConstAbs
|
|
|
|
|
import HepLean.AnomalyCancellation.PureU1.LineInPlaneCond
|
|
|
|
|
import HepLean.AnomalyCancellation.PureU1.Even.BasisLinear
|
|
|
|
|
import HepLean.AnomalyCancellation.PureU1.Even.LineInCubic
|
|
|
|
|
import HepLean.AnomalyCancellation.PureU1.Permutations
|
|
|
|
|
import Mathlib.RepresentationTheory.Basic
|
|
|
|
|
import Mathlib.Tactic.Polyrith
|
|
|
|
|
/-!
|
|
|
|
|
# Parameterization in even case
|
|
|
|
|
|
|
|
|
|
Given maps `g : Fin n.succ → ℚ`, `f : Fin n → ℚ` and `a : ℚ` we form a solution to the anomaly
|
|
|
|
|
equations. We show that every solution can be got in this way, up to permutation, unless it, up to
|
2024-05-21 14:10:56 +02:00
|
|
|
|
permutation, lives in the plane spanned by the first part of the basis vector.
|
2024-04-18 11:42:53 -04:00
|
|
|
|
|
|
|
|
|
The main reference is:
|
|
|
|
|
|
|
|
|
|
- https://arxiv.org/pdf/1912.04804.pdf
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
namespace PureU1
|
|
|
|
|
namespace Even
|
|
|
|
|
|
|
|
|
|
open BigOperators
|
|
|
|
|
|
|
|
|
|
variable {n : ℕ}
|
|
|
|
|
open VectorLikeEvenPlane
|
|
|
|
|
|
2024-05-21 14:10:56 +02:00
|
|
|
|
/-- Given coefficients `g` of a point in `P` and `f` of a point in `P!`, and a rational, we get a
|
2024-04-18 11:42:53 -04:00
|
|
|
|
rational `a ∈ ℚ`, we get a
|
|
|
|
|
point in `(PureU1 (2 * n.succ)).AnomalyFreeLinear`, which we will later show extends to an anomaly
|
|
|
|
|
free point. -/
|
|
|
|
|
def parameterizationAsLinear (g : Fin n.succ → ℚ) (f : Fin n → ℚ) (a : ℚ) :
|
|
|
|
|
(PureU1 (2 * n.succ)).LinSols :=
|
2024-04-22 09:48:44 -04:00
|
|
|
|
a • ((accCubeTriLinSymm (P! f) (P! f) (P g)) • P' g +
|
|
|
|
|
(- accCubeTriLinSymm (P g) (P g) (P! f)) • P!' f)
|
2024-04-18 11:42:53 -04:00
|
|
|
|
|
|
|
|
|
lemma parameterizationAsLinear_val (g : Fin n.succ → ℚ) (f : Fin n → ℚ) (a : ℚ) :
|
|
|
|
|
(parameterizationAsLinear g f a).val =
|
2024-04-22 09:48:44 -04:00
|
|
|
|
a • ((accCubeTriLinSymm (P! f) (P! f) (P g)) • P g +
|
|
|
|
|
(- accCubeTriLinSymm (P g) (P g) (P! f)) • P! f) := by
|
2024-04-18 11:42:53 -04:00
|
|
|
|
rw [parameterizationAsLinear]
|
|
|
|
|
change a • (_ • (P' g).val + _ • (P!' f).val) = _
|
|
|
|
|
rw [P'_val, P!'_val]
|
|
|
|
|
|
|
|
|
|
lemma parameterizationCharge_cube (g : Fin n.succ → ℚ) (f : Fin n → ℚ) (a : ℚ):
|
|
|
|
|
accCube (2* n.succ) (parameterizationAsLinear g f a).val = 0 := by
|
|
|
|
|
change accCubeTriLinSymm.toCubic _ = 0
|
|
|
|
|
rw [parameterizationAsLinear_val, HomogeneousCubic.map_smul,
|
|
|
|
|
TriLinearSymm.toCubic_add, HomogeneousCubic.map_smul, HomogeneousCubic.map_smul]
|
|
|
|
|
erw [P_accCube, P!_accCube]
|
|
|
|
|
rw [accCubeTriLinSymm.map_smul₁, accCubeTriLinSymm.map_smul₂,
|
|
|
|
|
accCubeTriLinSymm.map_smul₃, accCubeTriLinSymm.map_smul₁, accCubeTriLinSymm.map_smul₂,
|
|
|
|
|
accCubeTriLinSymm.map_smul₃]
|
|
|
|
|
ring
|
|
|
|
|
|
|
|
|
|
/-- The construction of a `Sol` from a `Fin n.succ → ℚ`, a `Fin n → ℚ` and a `ℚ`. -/
|
|
|
|
|
def parameterization (g : Fin n.succ → ℚ) (f : Fin n → ℚ) (a : ℚ) :
|
|
|
|
|
(PureU1 (2 * n.succ)).Sols :=
|
|
|
|
|
⟨⟨parameterizationAsLinear g f a, by intro i; simp at i; exact Fin.elim0 i⟩,
|
|
|
|
|
parameterizationCharge_cube g f a⟩
|
|
|
|
|
|
|
|
|
|
lemma anomalyFree_param {S : (PureU1 (2 * n.succ)).Sols}
|
|
|
|
|
(g : Fin n.succ → ℚ) (f : Fin n → ℚ) (hS : S.val = P g + P! f) :
|
2024-04-22 09:48:44 -04:00
|
|
|
|
accCubeTriLinSymm (P g) (P g) (P! f) = - accCubeTriLinSymm (P! f) (P! f) (P g) := by
|
2024-04-18 11:42:53 -04:00
|
|
|
|
have hC := S.cubicSol
|
|
|
|
|
rw [hS] at hC
|
|
|
|
|
change (accCube (2 * n.succ)) (P g + P! f) = 0 at hC
|
|
|
|
|
erw [TriLinearSymm.toCubic_add] at hC
|
|
|
|
|
erw [P_accCube] at hC
|
|
|
|
|
erw [P!_accCube] at hC
|
|
|
|
|
linear_combination hC / 3
|
|
|
|
|
|
|
|
|
|
/-- A proposition on a solution which is true if `accCubeTriLinSymm (P g, P g, P! f) ≠ 0`.
|
|
|
|
|
In this case our parameterization above will be able to recover this point. -/
|
2024-06-26 11:54:02 -04:00
|
|
|
|
def GenericCase (S : (PureU1 (2 * n.succ)).Sols) : Prop :=
|
2024-04-18 11:42:53 -04:00
|
|
|
|
∀ (g : Fin n.succ → ℚ) (f : Fin n → ℚ) (_ : S.val = P g + P! f) ,
|
2024-04-22 09:48:44 -04:00
|
|
|
|
accCubeTriLinSymm (P g) (P g) (P! f) ≠ 0
|
2024-04-18 11:42:53 -04:00
|
|
|
|
|
|
|
|
|
lemma genericCase_exists (S : (PureU1 (2 * n.succ)).Sols)
|
|
|
|
|
(hs : ∃ (g : Fin n.succ → ℚ) (f : Fin n → ℚ), S.val = P g + P! f ∧
|
2024-06-26 11:54:02 -04:00
|
|
|
|
accCubeTriLinSymm (P g) (P g) (P! f) ≠ 0) : GenericCase S := by
|
2024-04-18 11:42:53 -04:00
|
|
|
|
intro g f hS hC
|
|
|
|
|
obtain ⟨g', f', hS', hC'⟩ := hs
|
|
|
|
|
rw [hS] at hS'
|
|
|
|
|
erw [Pa_eq] at hS'
|
|
|
|
|
rw [hS'.1, hS'.2] at hC
|
|
|
|
|
exact hC' hC
|
|
|
|
|
|
|
|
|
|
/-- A proposition on a solution which is true if `accCubeTriLinSymm (P g, P g, P! f) = 0`.-/
|
2024-06-26 11:54:02 -04:00
|
|
|
|
def SpecialCase (S : (PureU1 (2 * n.succ)).Sols) : Prop :=
|
2024-04-18 11:42:53 -04:00
|
|
|
|
∀ (g : Fin n.succ → ℚ) (f : Fin n → ℚ) (_ : S.val = P g + P! f) ,
|
2024-04-22 09:48:44 -04:00
|
|
|
|
accCubeTriLinSymm (P g) (P g) (P! f) = 0
|
2024-04-18 11:42:53 -04:00
|
|
|
|
|
|
|
|
|
lemma specialCase_exists (S : (PureU1 (2 * n.succ)).Sols)
|
|
|
|
|
(hs : ∃ (g : Fin n.succ → ℚ) (f : Fin n → ℚ), S.val = P g + P! f ∧
|
2024-06-26 11:54:02 -04:00
|
|
|
|
accCubeTriLinSymm (P g) (P g) (P! f) = 0) : SpecialCase S := by
|
2024-04-18 11:42:53 -04:00
|
|
|
|
intro g f hS
|
|
|
|
|
obtain ⟨g', f', hS', hC'⟩ := hs
|
|
|
|
|
rw [hS] at hS'
|
|
|
|
|
erw [Pa_eq] at hS'
|
|
|
|
|
rw [hS'.1, hS'.2]
|
|
|
|
|
exact hC'
|
|
|
|
|
|
|
|
|
|
lemma generic_or_special (S : (PureU1 (2 * n.succ)).Sols) :
|
2024-06-26 11:54:02 -04:00
|
|
|
|
GenericCase S ∨ SpecialCase S := by
|
2024-04-18 11:42:53 -04:00
|
|
|
|
obtain ⟨g, f, h⟩ := span_basis S.1.1
|
2024-04-22 09:48:44 -04:00
|
|
|
|
have h1 : accCubeTriLinSymm (P g) (P g) (P! f) ≠ 0 ∨
|
|
|
|
|
accCubeTriLinSymm (P g) (P g) (P! f) = 0 := by
|
2024-04-18 11:42:53 -04:00
|
|
|
|
exact ne_or_eq _ _
|
|
|
|
|
cases h1 <;> rename_i h1
|
|
|
|
|
exact Or.inl (genericCase_exists S ⟨g, f, h, h1⟩)
|
|
|
|
|
exact Or.inr (specialCase_exists S ⟨g, f, h, h1⟩)
|
|
|
|
|
|
2024-06-26 11:54:02 -04:00
|
|
|
|
theorem generic_case {S : (PureU1 (2 * n.succ)).Sols} (h : GenericCase S) :
|
2024-04-18 11:44:06 -04:00
|
|
|
|
∃ g f a, S = parameterization g f a := by
|
2024-04-18 11:42:53 -04:00
|
|
|
|
obtain ⟨g, f, hS⟩ := span_basis S.1.1
|
2024-04-22 09:48:44 -04:00
|
|
|
|
use g, f, (accCubeTriLinSymm (P! f) (P! f) (P g))⁻¹
|
2024-04-18 11:42:53 -04:00
|
|
|
|
rw [parameterization]
|
|
|
|
|
apply ACCSystem.Sols.ext
|
|
|
|
|
rw [parameterizationAsLinear_val]
|
|
|
|
|
change S.val = _ • ( _ • P g + _• P! f)
|
|
|
|
|
rw [anomalyFree_param _ _ hS]
|
|
|
|
|
rw [neg_neg, ← smul_add, smul_smul, inv_mul_cancel, one_smul]
|
|
|
|
|
exact hS
|
|
|
|
|
have h := h g f hS
|
|
|
|
|
rw [anomalyFree_param _ _ hS] at h
|
|
|
|
|
simp at h
|
|
|
|
|
exact h
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lemma special_case_lineInCubic {S : (PureU1 (2 * n.succ)).Sols}
|
2024-06-26 11:54:02 -04:00
|
|
|
|
(h : SpecialCase S) : LineInCubic S.1.1 := by
|
2024-04-18 11:42:53 -04:00
|
|
|
|
intro g f hS a b
|
|
|
|
|
erw [TriLinearSymm.toCubic_add]
|
|
|
|
|
rw [HomogeneousCubic.map_smul, HomogeneousCubic.map_smul]
|
|
|
|
|
erw [P_accCube, P!_accCube]
|
|
|
|
|
have h := h g f hS
|
|
|
|
|
rw [accCubeTriLinSymm.map_smul₁, accCubeTriLinSymm.map_smul₂,
|
|
|
|
|
accCubeTriLinSymm.map_smul₃, accCubeTriLinSymm.map_smul₁, accCubeTriLinSymm.map_smul₂,
|
|
|
|
|
accCubeTriLinSymm.map_smul₃]
|
|
|
|
|
rw [h]
|
|
|
|
|
rw [anomalyFree_param _ _ hS] at h
|
|
|
|
|
simp at h
|
2024-04-22 09:48:44 -04:00
|
|
|
|
change accCubeTriLinSymm (P! f) (P! f) (P g) = 0 at h
|
2024-04-18 11:42:53 -04:00
|
|
|
|
erw [h]
|
|
|
|
|
simp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lemma special_case_lineInCubic_perm {S : (PureU1 (2 * n.succ)).Sols}
|
|
|
|
|
(h : ∀ (M : (FamilyPermutations (2 * n.succ)).group),
|
2024-06-26 11:54:02 -04:00
|
|
|
|
SpecialCase ((FamilyPermutations (2 * n.succ)).solAction.toFun S M)) :
|
|
|
|
|
LineInCubicPerm S.1.1 := by
|
2024-04-18 11:42:53 -04:00
|
|
|
|
intro M
|
|
|
|
|
exact special_case_lineInCubic (h M)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem special_case {S : (PureU1 (2 * n.succ.succ)).Sols}
|
|
|
|
|
(h : ∀ (M : (FamilyPermutations (2 * n.succ.succ)).group),
|
2024-06-26 11:54:02 -04:00
|
|
|
|
SpecialCase ((FamilyPermutations (2 * n.succ.succ)).solAction.toFun S M)) :
|
2024-04-18 11:42:53 -04:00
|
|
|
|
∃ (M : (FamilyPermutations (2 * n.succ.succ)).group),
|
|
|
|
|
((FamilyPermutations (2 * n.succ.succ)).solAction.toFun S M).1.1
|
|
|
|
|
∈ Submodule.span ℚ (Set.range basis) :=
|
|
|
|
|
lineInCubicPerm_in_plane S (special_case_lineInCubic_perm h)
|
|
|
|
|
|
|
|
|
|
end Even
|
|
|
|
|
end PureU1
|