2024-04-17 14:25:17 -04:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license.
|
|
|
|
|
Authors: Joseph Tooby-Smith
|
|
|
|
|
-/
|
|
|
|
|
import HepLean.AnomalyCancellation.SM.Basic
|
|
|
|
|
/-!
|
|
|
|
|
# Anomaly Cancellation in the Standard Model without Gravity
|
|
|
|
|
|
2024-05-21 14:12:57 +02:00
|
|
|
|
This file defines the system of anomaly equations for the SM without RHN, and
|
2024-04-17 14:25:17 -04:00
|
|
|
|
without the gravitational ACC.
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
universe v u
|
|
|
|
|
|
|
|
|
|
namespace SM
|
|
|
|
|
open SMCharges
|
|
|
|
|
open SMACCs
|
|
|
|
|
open BigOperators
|
|
|
|
|
|
|
|
|
|
/-- The ACC system for the standard model without RHN and without the gravitational ACC. -/
|
|
|
|
|
@[simps!]
|
|
|
|
|
def SMNoGrav (n : ℕ) : ACCSystem where
|
|
|
|
|
numberLinear := 2
|
|
|
|
|
linearACCs := fun i =>
|
|
|
|
|
match i with
|
|
|
|
|
| 0 => @accSU2 n
|
|
|
|
|
| 1 => accSU3
|
|
|
|
|
numberQuadratic := 0
|
|
|
|
|
quadraticACCs := by
|
|
|
|
|
intro i
|
|
|
|
|
exact Fin.elim0 i
|
|
|
|
|
cubicACC := accCube
|
|
|
|
|
|
|
|
|
|
namespace SMNoGrav
|
|
|
|
|
|
|
|
|
|
variable {n : ℕ}
|
|
|
|
|
|
|
|
|
|
lemma SU2Sol (S : (SMNoGrav n).LinSols) : accSU2 S.val = 0 := by
|
|
|
|
|
have hS := S.linearSol
|
|
|
|
|
simp at hS
|
|
|
|
|
exact hS 0
|
|
|
|
|
|
|
|
|
|
lemma SU3Sol (S : (SMNoGrav n).LinSols) : accSU3 S.val = 0 := by
|
|
|
|
|
have hS := S.linearSol
|
|
|
|
|
simp at hS
|
|
|
|
|
exact hS 1
|
|
|
|
|
|
|
|
|
|
lemma cubeSol (S : (SMNoGrav n).Sols) : accCube S.val = 0 := by
|
|
|
|
|
exact S.cubicSol
|
|
|
|
|
|
|
|
|
|
/-- An element of `charges` which satisfies the linear ACCs
|
|
|
|
|
gives us a element of `AnomalyFreeLinear`. -/
|
2024-06-26 11:54:02 -04:00
|
|
|
|
def chargeToLinear (S : (SMNoGrav n).Charges) (hSU2 : accSU2 S = 0) (hSU3 : accSU3 S = 0) :
|
2024-04-17 14:25:17 -04:00
|
|
|
|
(SMNoGrav n).LinSols :=
|
|
|
|
|
⟨S, by
|
|
|
|
|
intro i
|
|
|
|
|
simp at i
|
|
|
|
|
match i with
|
|
|
|
|
| 0 => exact hSU2
|
|
|
|
|
| 1 => exact hSU3⟩
|
|
|
|
|
|
|
|
|
|
/-- An element of `AnomalyFreeLinear` which satisfies the quadratic ACCs
|
|
|
|
|
gives us a element of `AnomalyFreeQuad`. -/
|
|
|
|
|
def linearToQuad (S : (SMNoGrav n).LinSols) : (SMNoGrav n).QuadSols :=
|
|
|
|
|
⟨S, by
|
|
|
|
|
intro i
|
|
|
|
|
exact Fin.elim0 i⟩
|
|
|
|
|
|
|
|
|
|
/-- An element of `AnomalyFreeQuad` which satisfies the quadratic ACCs
|
|
|
|
|
gives us a element of `AnomalyFree`. -/
|
|
|
|
|
def quadToAF (S : (SMNoGrav n).QuadSols) (hc : accCube S.val = 0) :
|
|
|
|
|
(SMNoGrav n).Sols := ⟨S, hc⟩
|
|
|
|
|
|
|
|
|
|
/-- An element of `charges` which satisfies the linear and quadratic ACCs
|
|
|
|
|
gives us a element of `AnomalyFreeQuad`. -/
|
2024-06-26 11:54:02 -04:00
|
|
|
|
def chargeToQuad (S : (SMNoGrav n).Charges) (hSU2 : accSU2 S = 0) (hSU3 : accSU3 S = 0) :
|
2024-04-17 14:25:17 -04:00
|
|
|
|
(SMNoGrav n).QuadSols :=
|
|
|
|
|
linearToQuad $ chargeToLinear S hSU2 hSU3
|
|
|
|
|
|
|
|
|
|
/-- An element of `charges` which satisfies the linear, quadratic and cubic ACCs
|
|
|
|
|
gives us a element of `AnomalyFree`. -/
|
2024-06-26 11:54:02 -04:00
|
|
|
|
def chargeToAF (S : (SMNoGrav n).Charges) (hSU2 : accSU2 S = 0) (hSU3 : accSU3 S = 0)
|
2024-04-17 14:25:17 -04:00
|
|
|
|
(hc : accCube S = 0) : (SMNoGrav n).Sols :=
|
|
|
|
|
quadToAF (chargeToQuad S hSU2 hSU3) hc
|
|
|
|
|
|
|
|
|
|
/-- An element of `AnomalyFreeLinear` which satisfies the quadratic and cubic ACCs
|
|
|
|
|
gives us a element of `AnomalyFree`. -/
|
|
|
|
|
def linearToAF (S : (SMNoGrav n).LinSols)
|
|
|
|
|
(hc : accCube S.val = 0) : (SMNoGrav n).Sols :=
|
|
|
|
|
quadToAF (linearToQuad S) hc
|
|
|
|
|
|
|
|
|
|
end SMNoGrav
|
|
|
|
|
|
|
|
|
|
end SM
|