PhysLean/HepLean/AnomalyCancellation/SM/NoGrav/One/LinearParameterization.lean

374 lines
11 KiB
Text
Raw Normal View History

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.SM.Basic
import HepLean.AnomalyCancellation.SM.NoGrav.Basic
import Mathlib.Tactic.FieldSimp
import Mathlib.Tactic.Linarith
import Mathlib.NumberTheory.FLT.Basic
import Mathlib.Algebra.QuadraticDiscriminant
/-!
# Parameterizations for solutions to the linear ACCs for 1 family
In this file we give two parameterizations
- `linearParameters` of solutions to the linear ACCs for 1 family
- `linearParametersQENeqZero` of solutions to the linear ACCs for 1 family with Q and E non-zero
These parameterizations are based on:
https://arxiv.org/abs/1907.00514
-/
2024-04-17 14:49:59 -04:00
universe v u
namespace SM
namespace SMNoGrav
namespace One
open SMCharges
open SMACCs
open BigOperators
/-- The parameters for a linear parameterization to the solution of the linear ACCs. -/
structure linearParameters where
/-- The parameter `Q'`. -/
Q' :
/-- The parameter `Y`. -/
Y :
/-- The parameter `E'`. -/
E' :
namespace linearParameters
@[ext]
2024-04-17 14:49:59 -04:00
lemma ext {S T : linearParameters} (hQ : S.Q' = T.Q') (hY : S.Y = T.Y) (hE : S.E' = T.E') :
S = T := by
cases' S
simp_all only
2024-05-21 14:12:53 +02:00
/-- The map from the linear parameters to elements of `(SMNoGrav 1).charges`. -/
@[simp]
def asCharges (S : linearParameters) : (SMNoGrav 1).Charges := fun i =>
match i with
| (0 : Fin 5) => S.Q'
| (1 : Fin 5) => S.Y - S.Q'
| (2 : Fin 5) => - (S.Y + S.Q')
| (3: Fin 5) => - 3 * S.Q'
| (4 : Fin 5) => S.E'
2024-04-17 14:49:59 -04:00
lemma speciesVal (S : linearParameters) :
(toSpecies i) S.asCharges (0 : Fin 1) = S.asCharges i := by
match i with
| 0 => rfl
| 1 => rfl
| 2 => rfl
| 3 => rfl
| 4 => rfl
/-- The map from the linear paramaters to elements of `(SMNoGrav 1).LinSols`. -/
def asLinear (S : linearParameters) : (SMNoGrav 1).LinSols :=
chargeToLinear S.asCharges (by
simp only [accSU2, SMSpecies_numberCharges, Finset.univ_unique, Fin.default_eq_zero,
Fin.isValue, Finset.sum_singleton, LinearMap.coe_mk, AddHom.coe_mk]
erw [speciesVal, speciesVal]
simp)
(by
simp only [accSU3, SMSpecies_numberCharges, Finset.univ_unique, Fin.default_eq_zero,
Fin.isValue, Finset.sum_singleton, LinearMap.coe_mk, AddHom.coe_mk]
repeat erw [speciesVal]
2024-04-17 14:49:59 -04:00
simp only [asCharges, neg_add_rev]
ring)
lemma asLinear_val (S : linearParameters) : S.asLinear.val = S.asCharges := by
rfl
lemma cubic (S : linearParameters) :
accCube (S.asCharges) = - 54 * S.Q'^3 - 18 * S.Q' * S.Y ^ 2 + S.E'^3 := by
simp only [HomogeneousCubic, accCube, cubeTriLin, TriLinearSymm.toCubic_apply,
TriLinearSymm.mk₃_toFun_apply_apply]
simp only [SMSpecies_numberCharges, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
Finset.sum_singleton]
repeat erw [speciesVal]
2024-04-17 14:49:59 -04:00
simp only [asCharges, neg_add_rev, neg_mul, mul_neg, neg_neg]
ring
lemma cubic_zero_Q'_zero (S : linearParameters) (hc : accCube (S.asCharges) = 0)
(h : S.Q' = 0) : S.E' = 0 := by
rw [cubic, h] at hc
simp at hc
exact hc
lemma cubic_zero_E'_zero (S : linearParameters) (hc : accCube (S.asCharges) = 0)
(h : S.E' = 0) : S.Q' = 0 := by
rw [cubic, h] at hc
simp at hc
have h1 : -(54 * S.Q' ^ 3) - 18 * S.Q' * S.Y ^ 2 = - 18 * (3 * S.Q' ^ 2 + S.Y ^ 2) * S.Q' := by
ring
rw [h1] at hc
simp at hc
cases' hc with hc hc
2024-06-13 08:10:08 -04:00
have h2 := (add_eq_zero_iff' (by nlinarith) (sq_nonneg S.Y)).mp hc
simp at h2
exact h2.1
exact hc
/-- The bijection between the type of linear parameters and `(SMNoGrav 1).LinSols`. -/
def bijection : linearParameters ≃ (SMNoGrav 1).LinSols where
toFun S := S.asLinear
invFun S := ⟨SMCharges.Q S.val (0 : Fin 1), (SMCharges.U S.val (0 : Fin 1) -
SMCharges.D S.val (0 : Fin 1))/2 ,
SMCharges.E S.val (0 : Fin 1)⟩
left_inv S := by
apply linearParameters.ext
rfl
repeat erw [speciesVal]
simp only [Fin.isValue]
repeat erw [speciesVal]
2024-04-17 14:49:59 -04:00
simp only [asCharges, neg_add_rev]
ring
simp only [toSpecies_apply]
repeat erw [speciesVal]
rfl
right_inv S := by
2024-04-17 14:49:59 -04:00
simp only [Fin.isValue, toSpecies_apply]
apply ACCSystemLinear.LinSols.ext
rw [charges_eq_toSpecies_eq]
intro i
rw [asLinear_val]
funext j
have hj : j = (0 : Fin 1):= by
simp only [Fin.isValue]
ext
simp
subst hj
erw [speciesVal]
have h1 := SU3Sol S
simp at h1
have h2 := SU2Sol S
simp at h2
match i with
| 0 => rfl
| 1 =>
field_simp
linear_combination -(1 * h1)
| 2 =>
field_simp
linear_combination -(1 * h1)
| 3 =>
field_simp
linear_combination -(1 * h2)
| 4 => rfl
/-- The bijection between the linear parameters and `(SMNoGrav 1).LinSols` in the special
case when Q and E are both not zero. -/
def bijectionQEZero : {S : linearParameters // S.Q' ≠ 0 ∧ S.E' ≠ 0} ≃
2024-04-17 14:49:59 -04:00
{S : (SMNoGrav 1).LinSols // Q S.val (0 : Fin 1) ≠ 0 ∧ E S.val (0 : Fin 1) ≠ 0} where
toFun S := ⟨bijection S, S.2⟩
invFun S := ⟨bijection.symm S, S.2⟩
left_inv S := by
apply Subtype.ext
exact bijection.left_inv S.1
right_inv S := by
apply Subtype.ext
exact bijection.right_inv S.1
lemma grav (S : linearParameters) :
accGrav S.asCharges = 0 ↔ S.E' = 6 * S.Q' := by
rw [accGrav]
simp only [SMSpecies_numberCharges, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
Finset.sum_singleton, LinearMap.coe_mk, AddHom.coe_mk]
repeat erw [speciesVal]
2024-04-17 14:49:59 -04:00
simp only [asCharges, neg_add_rev, neg_mul, mul_neg]
ring_nf
rw [add_comm, add_eq_zero_iff_eq_neg]
simp
end linearParameters
/-- The parameters for solutions to the linear ACCs with the condition that Q and E are non-zero.-/
structure linearParametersQENeqZero where
/-- The parameter `x`. -/
x :
/-- The parameter `v`. -/
v :
/-- The parameter `w`. -/
w :
hx : x ≠ 0
hvw : v + w ≠ 0
namespace linearParametersQENeqZero
@[ext]
lemma ext {S T : linearParametersQENeqZero} (hx : S.x = T.x) (hv : S.v = T.v)
(hw : S.w = T.w) : S = T := by
cases' S
simp_all only
/-- A map from `linearParametersQENeqZero` to `linearParameters`. -/
@[simps!]
def toLinearParameters (S : linearParametersQENeqZero) :
{S : linearParameters // S.Q' ≠ 0 ∧ S.E' ≠ 0} :=
⟨⟨S.x, 3 * S.x * (S.v - S.w) / (S.v + S.w), - 6 * S.x / (S.v + S.w)⟩,
by
apply And.intro S.hx
2024-04-17 14:49:59 -04:00
simp only [neg_mul, ne_eq, div_eq_zero_iff, neg_eq_zero, mul_eq_zero, OfNat.ofNat_ne_zero,
false_or]
rw [not_or]
exact And.intro S.hx S.hvw⟩
/-- A map from `linearParameters` to `linearParametersQENeqZero` in the special case when
`Q'` and `E'` of the linear parameters are non-zero. -/
@[simps!]
def tolinearParametersQNeqZero (S : {S : linearParameters // S.Q' ≠ 0 ∧ S.E' ≠ 0}) :
linearParametersQENeqZero :=
⟨S.1.Q', - (3 * S.1.Q' + S.1.Y) / S.1.E', - (3 * S.1.Q' - S.1.Y)/ S.1.E', S.2.1,
by
2024-04-17 14:49:59 -04:00
simp only [ne_eq, neg_add_rev, neg_sub]
field_simp
ring_nf
2024-04-17 14:49:59 -04:00
simp only [neg_eq_zero, mul_eq_zero, OfNat.ofNat_ne_zero, or_false]
exact S.2⟩
/-- A bijection between the type `linearParametersQENeqZero` and linear parameters
with `Q'` and `E'` non-zero. -/
@[simps!]
def bijectionLinearParameters :
linearParametersQENeqZero ≃ {S : linearParameters // S.Q' ≠ 0 ∧ S.E' ≠ 0} where
toFun := toLinearParameters
invFun := tolinearParametersQNeqZero
left_inv S := by
have hvw := S.hvw
have hQ := S.hx
apply linearParametersQENeqZero.ext
2024-06-13 08:10:08 -04:00
rfl
field_simp
ring
2024-04-17 14:49:59 -04:00
simp only [tolinearParametersQNeqZero_w, toLinearParameters_coe_Y, toLinearParameters_coe_Q',
toLinearParameters_coe_E']
field_simp
ring
right_inv S := by
apply Subtype.ext
have hQ := S.2.1
have hE := S.2.2
apply linearParameters.ext
2024-06-13 08:10:08 -04:00
rfl
field_simp
ring_nf
field_simp [hQ, hE]
2024-04-29 13:56:30 -04:00
ring_nf
field_simp
ring_nf
field_simp [hQ, hE]
/-- The bijection between `linearParametersQENeqZero` and `LinSols` with `Q` and `E` non-zero. -/
def bijection : linearParametersQENeqZero ≃
{S : (SMNoGrav 1).LinSols // Q S.val (0 : Fin 1) ≠ 0 ∧ E S.val (0 : Fin 1) ≠ 0} :=
bijectionLinearParameters.trans (linearParameters.bijectionQEZero)
lemma cubic (S : linearParametersQENeqZero) :
accCube (bijection S).1.val = 0 ↔ S.v ^ 3 + S.w ^ 3 = -1 := by
erw [linearParameters.cubic]
2024-04-17 14:49:59 -04:00
simp only [ne_eq, bijectionLinearParameters_apply_coe_Q', neg_mul,
bijectionLinearParameters_apply_coe_Y, div_pow, bijectionLinearParameters_apply_coe_E']
have hvw := S.hvw
have hQ := S.hx
field_simp
have h1 : (-(54 * S.x ^ 3 * (S.v + S.w) ^ 2) - 18 * S.x * (3 * S.x * (S.v - S.w)) ^ 2) *
(S.v + S.w) ^ 3 + (-(6 * S.x)) ^ 3 * (S.v + S.w) ^ 2 =
- 216 * S.x ^3 * (S.v ^3 + S.w ^3 +1) * (S.v + S.w) ^ 2 := by
ring
rw [h1]
simp_all
2024-06-13 08:10:08 -04:00
exact add_eq_zero_iff_eq_neg
lemma cubic_v_or_w_zero (S : linearParametersQENeqZero) (h : accCube (bijection S).1.val = 0)
(FLTThree : FermatLastTheoremWith 3) :
S.v = 0 S.w = 0 := by
rw [S.cubic] at h
have h1 : (-1)^3 = (-1 : ):= by rfl
rw [← h1] at h
by_contra hn
simp [not_or] at hn
2024-06-13 08:10:08 -04:00
have h2 := FLTThree S.v S.w (-1) hn.1 hn.2 (Ne.symm (ne_of_beq_false (by rfl)))
exact h2 h
lemma cubic_v_zero (S : linearParametersQENeqZero) (h : accCube (bijection S).1.val = 0)
(hv : S.v = 0 ) : S.w = -1 := by
rw [S.cubic, hv] at h
simp at h
have h' : (S.w + 1) * (1 * S.w * S.w + (-1) * S.w + 1) = 0 := by
ring_nf
2024-06-13 08:10:08 -04:00
exact add_eq_zero_iff_neg_eq.mpr (id (Eq.symm h))
have h'' : (1 * S.w * S.w + (-1) * S.w + 1) ≠ 0 := by
refine quadratic_ne_zero_of_discrim_ne_sq ?_ S.w
intro s
by_contra hn
have h : s ^ 2 < 0 := by
rw [← hn]
simp [discrim]
nlinarith
simp_all
2024-06-13 08:10:08 -04:00
exact eq_neg_of_add_eq_zero_left h'
lemma cube_w_zero (S : linearParametersQENeqZero) (h : accCube (bijection S).1.val = 0)
(hw : S.w = 0 ) : S.v = -1 := by
rw [S.cubic, hw] at h
simp at h
have h' : (S.v + 1) * (1 * S.v * S.v + (-1) * S.v + 1) = 0 := by
ring_nf
2024-06-13 08:10:08 -04:00
exact add_eq_zero_iff_neg_eq.mpr (id (Eq.symm h))
have h'' : (1 * S.v * S.v + (-1) * S.v + 1) ≠ 0 := by
refine quadratic_ne_zero_of_discrim_ne_sq ?_ S.v
intro s
by_contra hn
have h : s ^ 2 < 0 := by
rw [← hn]
simp [discrim]
nlinarith
simp_all
2024-06-13 08:10:08 -04:00
exact eq_neg_of_add_eq_zero_left h'
lemma cube_w_v (S : linearParametersQENeqZero) (h : accCube (bijection S).1.val = 0)
(FLTThree : FermatLastTheoremWith 3) :
(S.v = -1 ∧ S.w = 0) (S.v = 0 ∧ S.w = -1) := by
have h' := cubic_v_or_w_zero S h FLTThree
cases' h' with hx hx
simp [hx]
exact cubic_v_zero S h hx
simp [hx]
exact cube_w_zero S h hx
lemma grav (S : linearParametersQENeqZero) : accGrav (bijection S).1.val = 0 ↔ S.v + S.w = -1 := by
erw [linearParameters.grav]
have hvw := S.hvw
have hQ := S.hx
field_simp
apply Iff.intro
intro h
apply (mul_right_inj' hQ).mp
linear_combination -1 * h / 6
intro h
rw [h]
2024-06-13 08:10:08 -04:00
exact Eq.symm (mul_neg_one (6 * S.x))
lemma grav_of_cubic (S : linearParametersQENeqZero) (h : accCube (bijection S).1.val = 0)
(FLTThree : FermatLastTheoremWith 3) :
accGrav (bijection S).1.val = 0 := by
rw [grav]
have h' := cube_w_v S h FLTThree
cases' h' with h h
rw [h.1, h.2]
2024-06-13 08:10:08 -04:00
exact Rat.add_zero (-1)
rw [h.1, h.2]
2024-06-13 08:10:08 -04:00
exact Rat.zero_add (-1)
end linearParametersQENeqZero
end One
end SMNoGrav
end SM