PhysLean/HepLean/AnomalyCancellation/SMNu/Ordinary/DimSevenPlane.lean

350 lines
10 KiB
Text
Raw Normal View History

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.SMNu.Ordinary.Basic
/-!
# Dimension 7 plane
We work here in the three family case.
We give an example of a 7 dimensional plane on which every point satisfies the ACCs.
The main result of this file is `seven_dim_plane_exists` which states that there exists a
7 dimensional plane of charges on which every point satisfies the ACCs.
-/
namespace SMRHN
namespace SM
open SMνCharges
open SMνACCs
open BigOperators
namespace PlaneSeven
2024-04-19 10:08:56 -04:00
/-- A charge assignment forming one of the basis elements of the plane. -/
def B₀ : (SM 3).Charges := toSpeciesEquiv.invFun ( fun s => fun i =>
match s, i with
| 0, 0 => 1
| 0, 1 => - 1
| _, _ => 0
)
lemma B₀_cubic (S T : (SM 3).Charges) : cubeTriLin B₀ S T =
6 * (S (0 : Fin 18) * T (0 : Fin 18) - S (1 : Fin 18) * T (1 : Fin 18)) := by
simp [Fin.sum_univ_three, B₀, Fin.divNat, Fin.modNat, finProdFinEquiv]
ring
2024-04-19 10:08:56 -04:00
/-- A charge assignment forming one of the basis elements of the plane. -/
def B₁ : (SM 3).Charges := toSpeciesEquiv.invFun ( fun s => fun i =>
match s, i with
| 1, 0 => 1
| 1, 1 => - 1
| _, _ => 0
)
lemma B₁_cubic (S T : (SM 3).Charges) : cubeTriLin B₁ S T =
3 * (S (3 : Fin 18) * T (3 : Fin 18) - S (4 : Fin 18) * T (4 : Fin 18)) := by
simp [Fin.sum_univ_three, B₁, Fin.divNat, Fin.modNat, finProdFinEquiv]
ring
2024-04-19 10:08:56 -04:00
/-- A charge assignment forming one of the basis elements of the plane. -/
def B₂ : (SM 3).Charges := toSpeciesEquiv.invFun ( fun s => fun i =>
match s, i with
| 2, 0 => 1
| 2, 1 => - 1
| _, _ => 0
)
lemma B₂_cubic (S T : (SM 3).Charges) : cubeTriLin B₂ S T =
3 * (S (6 : Fin 18) * T (6 : Fin 18) - S (7 : Fin 18) * T (7 : Fin 18)) := by
simp [Fin.sum_univ_three, B₂, Fin.divNat, Fin.modNat, finProdFinEquiv]
ring
2024-04-19 10:08:56 -04:00
/-- A charge assignment forming one of the basis elements of the plane. -/
def B₃ : (SM 3).Charges := toSpeciesEquiv.invFun ( fun s => fun i =>
match s, i with
| 3, 0 => 1
| 3, 1 => - 1
| _, _ => 0
)
lemma B₃_cubic (S T : (SM 3).Charges) : cubeTriLin B₃ S T =
2 * (S (9 : Fin 18) * T (9 : Fin 18) - S (10 : Fin 18) * T (10 : Fin 18)) := by
simp [Fin.sum_univ_three, B₃, Fin.divNat, Fin.modNat, finProdFinEquiv]
ring_nf
rfl
2024-04-19 10:08:56 -04:00
/-- A charge assignment forming one of the basis elements of the plane. -/
def B₄ : (SM 3).Charges := toSpeciesEquiv.invFun ( fun s => fun i =>
match s, i with
| 4, 0 => 1
| 4, 1 => - 1
| _, _ => 0
)
lemma B₄_cubic (S T : (SM 3).Charges) : cubeTriLin B₄ S T =
(S (12 : Fin 18) * T (12 : Fin 18) - S (13 : Fin 18) * T (13 : Fin 18)) := by
simp [Fin.sum_univ_three, B₄, Fin.divNat, Fin.modNat, finProdFinEquiv]
ring_nf
rfl
2024-04-19 10:08:56 -04:00
/-- A charge assignment forming one of the basis elements of the plane. -/
def B₅ : (SM 3).Charges := toSpeciesEquiv.invFun ( fun s => fun i =>
match s, i with
| 5, 0 => 1
| 5, 1 => - 1
| _, _ => 0
)
lemma B₅_cubic (S T : (SM 3).Charges) : cubeTriLin B₅ S T =
(S (15 : Fin 18) * T (15 : Fin 18) - S (16 : Fin 18) * T (16 : Fin 18)) := by
simp [Fin.sum_univ_three, B₅, Fin.divNat, Fin.modNat, finProdFinEquiv]
ring_nf
rfl
2024-04-19 10:08:56 -04:00
/-- A charge assignment forming one of the basis elements of the plane. -/
def B₆ : (SM 3).Charges := toSpeciesEquiv.invFun ( fun s => fun i =>
match s, i with
| 1, 2 => 1
| 2, 2 => -1
| _, _ => 0
)
lemma B₆_cubic (S T : (SM 3).Charges) : cubeTriLin B₆ S T =
3* (S (5 : Fin 18) * T (5 : Fin 18) - S (8 : Fin 18) * T (8 : Fin 18)) := by
simp [Fin.sum_univ_three, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv]
ring_nf
2024-04-19 10:08:56 -04:00
/-- The charge assignments forming a basis of the plane. -/
@[simp]
def B : Fin 7 → (SM 3).Charges := fun i =>
match i with
| 0 => B₀
| 1 => B₁
| 2 => B₂
| 3 => B₃
| 4 => B₄
| 5 => B₅
| 6 => B₆
lemma B₀_Bi_cubic {i : Fin 7} (hi : 0 ≠ i) (S : (SM 3).Charges) :
cubeTriLin (B 0) (B i) S = 0 := by
change cubeTriLin B₀ (B i) S = 0
rw [B₀_cubic]
fin_cases i <;>
simp at hi <;>
simp [B₀, B₁, B₂, B₃, B₄, B₅, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv]
lemma B₁_Bi_cubic {i : Fin 7} (hi : 1 ≠ i) (S : (SM 3).Charges) :
cubeTriLin (B 1) (B i) S = 0 := by
change cubeTriLin B₁ (B i) S = 0
rw [B₁_cubic]
fin_cases i <;>
simp at hi <;>
simp [B₀, B₁, B₂, B₃, B₄, B₅, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv]
lemma B₂_Bi_cubic {i : Fin 7} (hi : 2 ≠ i) (S : (SM 3).Charges) :
cubeTriLin (B 2) (B i) S = 0 := by
change cubeTriLin B₂ (B i) S = 0
rw [B₂_cubic]
fin_cases i <;>
simp at hi <;>
simp [B₀, B₁, B₂, B₃, B₄, B₅, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv]
lemma B₃_Bi_cubic {i : Fin 7} (hi : 3 ≠ i) (S : (SM 3).Charges) :
cubeTriLin (B 3) (B i) S = 0 := by
change cubeTriLin (B₃) (B i) S = 0
rw [B₃_cubic]
fin_cases i <;>
simp at hi <;>
simp [B₀, B₁, B₂, B₃, B₄, B₅, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv]
lemma B₄_Bi_cubic {i : Fin 7} (hi : 4 ≠ i) (S : (SM 3).Charges) :
cubeTriLin (B 4) (B i) S = 0 := by
change cubeTriLin (B₄) (B i) S = 0
rw [B₄_cubic]
fin_cases i <;>
simp at hi <;>
simp [B₀, B₁, B₂, B₃, B₄, B₅, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv]
lemma B₅_Bi_cubic {i : Fin 7} (hi : 5 ≠ i) (S : (SM 3).Charges) :
cubeTriLin (B 5) (B i) S = 0 := by
change cubeTriLin (B₅) (B i) S = 0
rw [B₅_cubic]
fin_cases i <;>
simp at hi <;>
simp [B₀, B₁, B₂, B₃, B₄, B₅, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv]
lemma B₆_Bi_cubic {i : Fin 7} (hi : 6 ≠ i) (S : (SM 3).Charges) :
cubeTriLin (B 6) (B i) S = 0 := by
change cubeTriLin (B₆) (B i) S = 0
rw [B₆_cubic]
fin_cases i <;>
simp at hi <;>
simp [B₀, B₁, B₂, B₃, B₄, B₅, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv]
lemma Bi_Bj_ne_cubic {i j : Fin 7} (h : i ≠ j) (S : (SM 3).Charges) :
cubeTriLin (B i) (B j) S = 0 := by
fin_cases i
exact B₀_Bi_cubic h S
exact B₁_Bi_cubic h S
exact B₂_Bi_cubic h S
exact B₃_Bi_cubic h S
exact B₄_Bi_cubic h S
exact B₅_Bi_cubic h S
exact B₆_Bi_cubic h S
lemma B₀_B₀_Bi_cubic {i : Fin 7} :
cubeTriLin (B 0) (B 0) (B i) = 0 := by
change cubeTriLin (B₀) (B₀) (B i) = 0
rw [B₀_cubic]
fin_cases i <;>
simp [B₀, B₁, B₂, B₃, B₄, B₅, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv]
lemma B₁_B₁_Bi_cubic {i : Fin 7} :
cubeTriLin (B 1) (B 1) (B i) = 0 := by
change cubeTriLin (B₁) (B₁) (B i) = 0
rw [B₁_cubic]
fin_cases i <;>
simp [B₀, B₁, B₂, B₃, B₄, B₅, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv]
lemma B₂_B₂_Bi_cubic {i : Fin 7} :
cubeTriLin (B 2) (B 2) (B i) = 0 := by
change cubeTriLin (B₂) (B₂) (B i) = 0
rw [B₂_cubic]
fin_cases i <;>
simp [B₀, B₁, B₂, B₃, B₄, B₅, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv]
lemma B₃_B₃_Bi_cubic {i : Fin 7} :
cubeTriLin (B 3) (B 3) (B i) = 0 := by
change cubeTriLin (B₃) (B₃) (B i) = 0
rw [B₃_cubic]
fin_cases i <;>
simp [B₀, B₁, B₂, B₃, B₄, B₅, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv]
lemma B₄_B₄_Bi_cubic {i : Fin 7} :
cubeTriLin (B 4) (B 4) (B i) = 0 := by
change cubeTriLin (B₄) (B₄) (B i) = 0
rw [B₄_cubic]
fin_cases i <;>
simp [B₀, B₁, B₂, B₃, B₄, B₅, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv]
lemma B₅_B₅_Bi_cubic {i : Fin 7} :
cubeTriLin (B 5) (B 5) (B i) = 0 := by
change cubeTriLin (B₅) (B₅) (B i) = 0
rw [B₅_cubic]
fin_cases i <;>
simp [B₀, B₁, B₂, B₃, B₄, B₅, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv]
lemma B₆_B₆_Bi_cubic {i : Fin 7} :
cubeTriLin (B 6) (B 6) (B i) = 0 := by
change cubeTriLin (B₆) (B₆) (B i) = 0
rw [B₆_cubic]
fin_cases i <;>
simp [B₀, B₁, B₂, B₃, B₄, B₅, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv]
lemma Bi_Bi_Bj_cubic (i j : Fin 7) :
cubeTriLin (B i) (B i) (B j) = 0 := by
fin_cases i
exact B₀_B₀_Bi_cubic
exact B₁_B₁_Bi_cubic
exact B₂_B₂_Bi_cubic
exact B₃_B₃_Bi_cubic
exact B₄_B₄_Bi_cubic
exact B₅_B₅_Bi_cubic
exact B₆_B₆_Bi_cubic
lemma Bi_Bj_Bk_cubic (i j k : Fin 7) :
cubeTriLin (B i) (B j) (B k) = 0 := by
by_cases hij : i ≠ j
exact Bi_Bj_ne_cubic hij (B k)
simp at hij
rw [hij]
exact Bi_Bi_Bj_cubic j k
theorem B_in_accCube (f : Fin 7 → ) : accCube (∑ i, f i • B i) = 0 := by
change cubeTriLin _ _ _ = 0
rw [cubeTriLin.map_sum₁₂₃]
apply Fintype.sum_eq_zero
intro i
apply Fintype.sum_eq_zero
intro k
apply Fintype.sum_eq_zero
intro l
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂, cubeTriLin.map_smul₃]
rw [Bi_Bj_Bk_cubic]
simp
lemma B_sum_is_sol (f : Fin 7 → ) : (SM 3).IsSolution (∑ i, f i • B i) := by
let X := chargeToAF (∑ i, f i • B i) (by
rw [map_sum]
apply Fintype.sum_eq_zero
intro i
rw [map_smul]
have h : accGrav (B i) = 0 := by
fin_cases i <;> rfl
rw [h]
simp)
(by
rw [map_sum]
apply Fintype.sum_eq_zero
intro i
rw [map_smul]
have h : accSU2 (B i) = 0 := by
fin_cases i <;> rfl
rw [h]
simp)
(by
rw [map_sum]
apply Fintype.sum_eq_zero
intro i
rw [map_smul]
have h : accSU3 (B i) = 0 := by
fin_cases i <;> rfl
rw [h]
simp)
(B_in_accCube f)
use X
rfl
theorem basis_linear_independent : LinearIndependent B := by
apply Fintype.linearIndependent_iff.mpr
intro f h
have h0 := congrFun h (0 : Fin 18)
have h1 := congrFun h (3 : Fin 18)
have h2 := congrFun h (6 : Fin 18)
have h3 := congrFun h (9 : Fin 18)
have h4 := congrFun h (12 : Fin 18)
have h5 := congrFun h (15 : Fin 18)
have h6 := congrFun h (5 : Fin 18)
rw [@Fin.sum_univ_seven] at h0 h1 h2 h3 h4 h5 h6
simp [HSMul.hSMul] at h0 h1 h2 h3 h4 h5 h6
rw [B₀, B₁, B₂, B₃, B₄, B₅, B₆] at h0 h1 h2 h3 h4 h5 h6
simp [Fin.divNat, Fin.modNat] at h0 h1 h2 h3 h4 h5 h6
intro i
match i with
| 0 => exact h0
| 1 => exact h1
| 2 => exact h2
| 3 => exact h3
| 4 => exact h4
| 5 => exact h5
| 6 => exact h6
end PlaneSeven
theorem seven_dim_plane_exists : ∃ (B : Fin 7 → (SM 3).Charges),
LinearIndependent B ∧ ∀ (f : Fin 7 → ), (SM 3).IsSolution (∑ i, f i • B i) := by
use PlaneSeven.B
apply And.intro
exact PlaneSeven.basis_linear_independent
exact PlaneSeven.B_sum_is_sol
end SM
end SMRHN