2024-04-18 08:40:46 -04:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license.
|
|
|
|
|
Authors: Joseph Tooby-Smith
|
|
|
|
|
-/
|
|
|
|
|
import HepLean.AnomalyCancellation.SMNu.Basic
|
|
|
|
|
import Mathlib.Tactic.Polyrith
|
2024-06-25 07:06:32 -04:00
|
|
|
|
import Mathlib.RepresentationTheory.Basic
|
2024-04-18 08:40:46 -04:00
|
|
|
|
/-!
|
|
|
|
|
# Permutations of SM charges with RHN.
|
|
|
|
|
|
|
|
|
|
We define the group of permutations for the SM charges with RHN.
|
|
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
universe v u
|
|
|
|
|
|
|
|
|
|
open Nat
|
|
|
|
|
open Finset
|
|
|
|
|
|
|
|
|
|
namespace SMRHN
|
|
|
|
|
|
|
|
|
|
open SMνCharges
|
|
|
|
|
open SMνACCs
|
|
|
|
|
open BigOperators
|
|
|
|
|
|
|
|
|
|
/-- The group of `Sₙ` permutations for each species. -/
|
|
|
|
|
@[simp]
|
2024-06-26 11:54:02 -04:00
|
|
|
|
def PermGroup (n : ℕ) := Fin 6 → Equiv.Perm (Fin n)
|
2024-04-18 08:40:46 -04:00
|
|
|
|
|
|
|
|
|
variable {n : ℕ}
|
|
|
|
|
|
2024-04-18 08:47:45 -04:00
|
|
|
|
@[simp]
|
2024-06-26 11:54:02 -04:00
|
|
|
|
instance : Group (PermGroup n) := Pi.group
|
2024-04-18 08:40:46 -04:00
|
|
|
|
|
|
|
|
|
/-- The image of an element of `permGroup n` under the representation on charges. -/
|
|
|
|
|
@[simps!]
|
2024-06-26 11:54:02 -04:00
|
|
|
|
def chargeMap (f : PermGroup n) : (SMνCharges n).Charges →ₗ[ℚ] (SMνCharges n).Charges where
|
2024-04-18 08:40:46 -04:00
|
|
|
|
toFun S := toSpeciesEquiv.symm (fun i => toSpecies i S ∘ f i )
|
2024-06-13 16:49:01 -04:00
|
|
|
|
map_add' _ _ := rfl
|
|
|
|
|
map_smul' _ _ := rfl
|
2024-04-18 08:40:46 -04:00
|
|
|
|
|
|
|
|
|
/-- The representation of `(permGroup n)` acting on the vector space of charges. -/
|
2024-04-18 08:47:45 -04:00
|
|
|
|
@[simp]
|
2024-06-26 11:54:02 -04:00
|
|
|
|
def repCharges {n : ℕ} : Representation ℚ (PermGroup n) (SMνCharges n).Charges where
|
2024-04-18 08:40:46 -04:00
|
|
|
|
toFun f := chargeMap f⁻¹
|
2024-06-13 16:49:01 -04:00
|
|
|
|
map_mul' f g := by
|
2024-06-26 11:54:02 -04:00
|
|
|
|
simp only [PermGroup, mul_inv_rev]
|
2024-04-18 08:40:46 -04:00
|
|
|
|
apply LinearMap.ext
|
|
|
|
|
intro S
|
|
|
|
|
rw [charges_eq_toSpecies_eq]
|
|
|
|
|
intro i
|
2024-04-18 08:47:45 -04:00
|
|
|
|
simp only [chargeMap_apply, Pi.mul_apply, Pi.inv_apply, Equiv.Perm.coe_mul, LinearMap.mul_apply]
|
2024-04-18 08:40:46 -04:00
|
|
|
|
repeat erw [toSMSpecies_toSpecies_inv]
|
|
|
|
|
rfl
|
|
|
|
|
map_one' := by
|
|
|
|
|
apply LinearMap.ext
|
|
|
|
|
intro S
|
|
|
|
|
rw [charges_eq_toSpecies_eq]
|
|
|
|
|
intro i
|
|
|
|
|
erw [toSMSpecies_toSpecies_inv]
|
|
|
|
|
rfl
|
|
|
|
|
|
2024-06-26 11:54:02 -04:00
|
|
|
|
lemma repCharges_toSpecies (f : PermGroup n) (S : (SMνCharges n).Charges) (j : Fin 6) :
|
2024-04-18 08:40:46 -04:00
|
|
|
|
toSpecies j (repCharges f S) = toSpecies j S ∘ f⁻¹ j := by
|
|
|
|
|
erw [toSMSpecies_toSpecies_inv]
|
|
|
|
|
|
|
|
|
|
|
2024-06-26 11:54:02 -04:00
|
|
|
|
lemma toSpecies_sum_invariant (m : ℕ) (f : PermGroup n) (S : (SMνCharges n).Charges) (j : Fin 6) :
|
2024-04-18 08:40:46 -04:00
|
|
|
|
∑ i, ((fun a => a ^ m) ∘ toSpecies j (repCharges f S)) i =
|
|
|
|
|
∑ i, ((fun a => a ^ m) ∘ toSpecies j S) i := by
|
|
|
|
|
erw [repCharges_toSpecies]
|
|
|
|
|
change ∑ i : Fin n, ((fun a => a ^ m) ∘ _) (⇑(f⁻¹ _) i) = ∑ i : Fin n, ((fun a => a ^ m) ∘ _) i
|
|
|
|
|
refine Equiv.Perm.sum_comp _ _ _ ?_
|
2024-06-26 11:54:02 -04:00
|
|
|
|
simp only [PermGroup, Fin.isValue, Pi.inv_apply, ne_eq, coe_univ, Set.subset_univ]
|
2024-04-18 08:40:46 -04:00
|
|
|
|
|
|
|
|
|
|
2024-06-26 11:54:02 -04:00
|
|
|
|
lemma accGrav_invariant (f : PermGroup n) (S : (SMνCharges n).Charges) :
|
2024-04-18 08:40:46 -04:00
|
|
|
|
accGrav (repCharges f S) = accGrav S :=
|
|
|
|
|
accGrav_ext
|
|
|
|
|
(by simpa using toSpecies_sum_invariant 1 f S)
|
|
|
|
|
|
|
|
|
|
|
2024-06-26 11:54:02 -04:00
|
|
|
|
lemma accSU2_invariant (f : PermGroup n) (S : (SMνCharges n).Charges) :
|
2024-04-18 08:40:46 -04:00
|
|
|
|
accSU2 (repCharges f S) = accSU2 S :=
|
|
|
|
|
accSU2_ext
|
|
|
|
|
(by simpa using toSpecies_sum_invariant 1 f S)
|
|
|
|
|
|
|
|
|
|
|
2024-06-26 11:54:02 -04:00
|
|
|
|
lemma accSU3_invariant (f : PermGroup n) (S : (SMνCharges n).Charges) :
|
2024-04-18 08:40:46 -04:00
|
|
|
|
accSU3 (repCharges f S) = accSU3 S :=
|
|
|
|
|
accSU3_ext
|
|
|
|
|
(by simpa using toSpecies_sum_invariant 1 f S)
|
|
|
|
|
|
2024-06-26 11:54:02 -04:00
|
|
|
|
lemma accYY_invariant (f : PermGroup n) (S : (SMνCharges n).Charges) :
|
2024-04-18 08:40:46 -04:00
|
|
|
|
accYY (repCharges f S) = accYY S :=
|
|
|
|
|
accYY_ext
|
|
|
|
|
(by simpa using toSpecies_sum_invariant 1 f S)
|
|
|
|
|
|
|
|
|
|
|
2024-06-26 11:54:02 -04:00
|
|
|
|
lemma accQuad_invariant (f : PermGroup n) (S : (SMνCharges n).Charges) :
|
2024-04-18 08:40:46 -04:00
|
|
|
|
accQuad (repCharges f S) = accQuad S :=
|
|
|
|
|
accQuad_ext
|
|
|
|
|
(toSpecies_sum_invariant 2 f S)
|
|
|
|
|
|
2024-06-26 11:54:02 -04:00
|
|
|
|
lemma accCube_invariant (f : PermGroup n) (S : (SMνCharges n).Charges) :
|
2024-04-18 08:40:46 -04:00
|
|
|
|
accCube (repCharges f S) = accCube S :=
|
|
|
|
|
accCube_ext
|
|
|
|
|
(by simpa using toSpecies_sum_invariant 3 f S)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
end SMRHN
|