PhysLean/HepLean/AnomalyCancellation/SMNu/PlusU1/HyperCharge.lean

151 lines
4.2 KiB
Text
Raw Normal View History

2024-04-18 09:26:45 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.SMNu.PlusU1.Basic
import HepLean.AnomalyCancellation.SMNu.PlusU1.FamilyMaps
/-!
# Hypercharge in SM with RHN.
Relavent definitions for the SM hypercharge.
-/
universe v u
namespace SMRHN
namespace PlusU1
open SMνCharges
open SMνACCs
open BigOperators
/-- The hypercharge for 1 family. -/
@[simps!]
def Y₁ : (PlusU1 1).Sols where
val := fun i =>
match i with
| (0 : Fin 6) => 1
| (1 : Fin 6) => -4
| (2 : Fin 6) => 2
| (3 : Fin 6) => -3
| (4 : Fin 6) => 6
| (5 : Fin 6) => 0
linearSol := by
intro i
simp at i
match i with
| 0 => rfl
| 1 => rfl
| 2 => rfl
| 3 => rfl
quadSol := by
intro i
simp at i
match i with
| 0 => rfl
cubicSol := by rfl
/-- The hypercharge for `n` family. -/
@[simps!]
def Y (n : ) : (PlusU1 n).Sols :=
familyUniversalAF n Y₁
namespace Y
variable {n : }
lemma on_quadBiLin (S : (PlusU1 n).Charges) :
2024-04-22 08:41:50 -04:00
quadBiLin (Y n).val S = accYY S := by
2024-04-18 09:26:45 -04:00
erw [familyUniversal_quadBiLin]
rw [accYY_decomp]
2024-04-18 09:29:34 -04:00
simp only [Fin.isValue, Y₁_val, SMνSpecies_numberCharges, toSpecies_apply, one_mul, mul_neg,
neg_mul, sub_neg_eq_add, add_left_inj, add_right_inj, mul_eq_mul_right_iff]
2024-04-18 09:26:45 -04:00
ring_nf
simp
2024-04-22 08:41:50 -04:00
lemma on_quadBiLin_AFL (S : (PlusU1 n).LinSols) : quadBiLin (Y n).val S.val = 0 := by
2024-04-18 09:26:45 -04:00
rw [on_quadBiLin]
rw [YYsol S]
lemma add_AFL_quad (S : (PlusU1 n).LinSols) (a b : ) :
accQuad (a • S.val + b • (Y n).val) = a ^ 2 * accQuad S.val := by
erw [BiLinearSymm.toHomogeneousQuad_add, quadSol (b • (Y n)).1]
rw [quadBiLin.map_smul₁, quadBiLin.map_smul₂, quadBiLin.swap, on_quadBiLin_AFL]
erw [accQuad.map_smul]
simp
lemma add_quad (S : (PlusU1 n).QuadSols) (a b : ) :
accQuad (a • S.val + b • (Y n).val) = 0 := by
rw [add_AFL_quad, quadSol S]
simp
/-- The `QuadSol` obtained by adding hypercharge to a `QuadSol`. -/
def addQuad (S : (PlusU1 n).QuadSols) (a b : ) : (PlusU1 n).QuadSols :=
linearToQuad (a • S.1 + b • (Y n).1.1) (add_quad S a b)
lemma addQuad_zero (S : (PlusU1 n).QuadSols) (a : ): addQuad S a 0 = a • S := by
simp [addQuad, linearToQuad]
rfl
lemma on_cubeTriLin (S : (PlusU1 n).Charges) :
cubeTriLin (Y n).val (Y n).val S = 6 * accYY S := by
2024-04-18 09:26:45 -04:00
erw [familyUniversal_cubeTriLin']
rw [accYY_decomp]
2024-04-18 09:29:34 -04:00
simp only [Fin.isValue, Y₁_val, mul_one, SMνSpecies_numberCharges, toSpecies_apply, mul_neg,
neg_mul, neg_neg, mul_zero, zero_mul, add_zero]
2024-04-18 09:26:45 -04:00
ring
lemma on_cubeTriLin_AFL (S : (PlusU1 n).LinSols) :
cubeTriLin (Y n).val (Y n).val S.val = 0 := by
2024-04-18 09:26:45 -04:00
rw [on_cubeTriLin]
rw [YYsol S]
simp
lemma on_cubeTriLin' (S : (PlusU1 n).Charges) :
cubeTriLin (Y n).val S S = 6 * accQuad S := by
2024-04-18 09:26:45 -04:00
erw [familyUniversal_cubeTriLin]
rw [accQuad_decomp]
2024-04-18 09:29:34 -04:00
simp only [Fin.isValue, Y₁_val, mul_one, SMνSpecies_numberCharges, toSpecies_apply, mul_neg,
neg_mul, zero_mul, add_zero]
2024-04-18 09:26:45 -04:00
ring_nf
lemma on_cubeTriLin'_ALQ (S : (PlusU1 n).QuadSols) :
cubeTriLin (Y n).val S.val S.val = 0 := by
2024-04-18 09:26:45 -04:00
rw [on_cubeTriLin']
rw [quadSol S]
simp
lemma add_AFL_cube (S : (PlusU1 n).LinSols) (a b : ) :
accCube (a • S.val + b • (Y n).val) =
a ^ 2 * (a * accCube S.val + 3 * b * cubeTriLin S.val S.val (Y n).val) := by
2024-04-18 09:26:45 -04:00
erw [TriLinearSymm.toCubic_add, cubeSol (b • (Y n)), accCube.map_smul]
repeat rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂, cubeTriLin.map_smul₃]
rw [on_cubeTriLin_AFL]
simp only [HomogeneousCubic, accCube, TriLinearSymm.toCubic_apply, Fin.isValue,
2024-04-22 08:41:50 -04:00
add_zero, Y_val, mul_zero]
2024-04-18 09:26:45 -04:00
ring
lemma add_AFQ_cube (S : (PlusU1 n).QuadSols) (a b : ) :
accCube (a • S.val + b • (Y n).val) = a ^ 3 * accCube S.val := by
rw [add_AFL_cube]
rw [cubeTriLin.swap₃]
rw [on_cubeTriLin'_ALQ]
ring
lemma add_AF_cube (S : (PlusU1 n).Sols) (a b : ) :
accCube (a • S.val + b • (Y n).val) = 0 := by
rw [add_AFQ_cube]
rw [cubeSol S]
simp
/-- The `Sol` obtained by adding hypercharge to a `Sol`. -/
def addCube (S : (PlusU1 n).Sols) (a b : ) : (PlusU1 n).Sols :=
quadToAF (addQuad S.1 a b) (add_AF_cube S a b)
end Y
end PlusU1
end SMRHN