PhysLean/HepLean/SpaceTime/LorentzAlgebra/Basic.lean

119 lines
4.1 KiB
Text
Raw Normal View History

2024-05-24 15:33:29 -04:00
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.Basic
import HepLean.SpaceTime.Metric
import Mathlib.Algebra.Lie.Classical
/-!
# The Lorentz Algebra
2024-06-09 14:33:56 -04:00
We define
- Define `lorentzAlgebra` via `LieAlgebra.Orthogonal.so'` as a subalgebra of
`Matrix (Fin 4) (Fin 4) `.
- In `mem_iff` prove that a matrix is in the Lorentz algebra if and only if it satisfies the
condition `Aᵀ * η = - η * A`.
2024-05-24 15:33:29 -04:00
-/
namespace SpaceTime
2024-05-24 15:33:29 -04:00
open Matrix
open TensorProduct
/-- The Lorentz algebra as a subalgebra of `Matrix (Fin 4) (Fin 4) `. -/
def lorentzAlgebra : LieSubalgebra (Matrix (Fin 4) (Fin 4) ) :=
LieSubalgebra.map (Matrix.reindexLieEquiv (@finSumFinEquiv 1 3)).toLieHom
(LieAlgebra.Orthogonal.so' (Fin 1) (Fin 3) )
namespace lorentzAlgebra
lemma transpose_eta (A : lorentzAlgebra) : A.1ᵀ * η = - η * A.1 := by
2024-06-09 14:33:56 -04:00
obtain ⟨B, hB1, hB2⟩ := A.2
2024-05-24 15:33:29 -04:00
apply (Equiv.apply_eq_iff_eq
(Matrix.reindexAlgEquiv (@finSumFinEquiv 1 3).symm).toEquiv).mp
2024-06-09 14:33:56 -04:00
simp only [Nat.reduceAdd, AlgEquiv.toEquiv_eq_coe, EquivLike.coe_coe, _root_.map_mul,
reindexAlgEquiv_apply, ← transpose_reindex, map_neg]
rw [(Equiv.apply_eq_iff_eq_symm_apply (reindex finSumFinEquiv.symm finSumFinEquiv.symm)).mpr
hB2.symm]
2024-05-24 15:33:29 -04:00
erw [η_reindex]
2024-06-09 14:33:56 -04:00
simpa [LieAlgebra.Orthogonal.so', IsSkewAdjoint, IsAdjointPair] using hB1
2024-05-24 15:33:29 -04:00
lemma mem_of_transpose_eta_eq_eta_mul_self {A : Matrix (Fin 4) (Fin 4) }
(h : Aᵀ * η = - η * A) : A ∈ lorentzAlgebra := by
2024-06-09 14:33:56 -04:00
simp only [lorentzAlgebra, Nat.reduceAdd, LieSubalgebra.mem_map]
2024-05-24 15:33:29 -04:00
use (Matrix.reindexLieEquiv (@finSumFinEquiv 1 3)).symm A
apply And.intro
2024-06-09 14:33:56 -04:00
· have h1 := (Equiv.apply_eq_iff_eq
(Matrix.reindexAlgEquiv (@finSumFinEquiv 1 3).symm).toEquiv).mpr h
erw [Matrix.reindexAlgEquiv_mul] at h1
simp only [Nat.reduceAdd, reindexAlgEquiv_apply, Equiv.symm_symm, AlgEquiv.toEquiv_eq_coe,
EquivLike.coe_coe, map_neg, _root_.map_mul] at h1
erw [η_reindex] at h1
simpa [Nat.reduceAdd, reindexLieEquiv_symm, reindexLieEquiv_apply,
LieAlgebra.Orthogonal.so', mem_skewAdjointMatricesLieSubalgebra,
mem_skewAdjointMatricesSubmodule, IsSkewAdjoint, IsAdjointPair, mul_neg] using h1
2024-06-13 08:10:08 -04:00
· exact LieEquiv.apply_symm_apply (reindexLieEquiv finSumFinEquiv) _
2024-06-09 14:33:56 -04:00
lemma mem_iff {A : Matrix (Fin 4) (Fin 4) } : A ∈ lorentzAlgebra ↔ Aᵀ * η = - η * A :=
Iff.intro (fun h => transpose_eta ⟨A, h⟩) (fun h => mem_of_transpose_eta_eq_eta_mul_self h)
2024-05-24 15:33:29 -04:00
2024-05-29 16:42:04 -04:00
lemma mem_iff' (A : Matrix (Fin 4) (Fin 4) ) : A ∈ lorentzAlgebra ↔ A = - η * Aᵀ * η := by
apply Iff.intro
intro h
2024-06-09 14:33:56 -04:00
simp_rw [mul_assoc, mem_iff.mp h, neg_mul, mul_neg, ← mul_assoc, η_sq, one_mul, neg_neg]
2024-05-29 16:42:04 -04:00
intro h
rw [mem_iff]
nth_rewrite 2 [h]
simp [← mul_assoc, η_sq]
2024-05-24 15:33:29 -04:00
2024-06-12 13:19:57 -04:00
lemma diag_comp (Λ : lorentzAlgebra) (μ : Fin 4) : Λ.1 μ μ = 0 := by
have h := congrArg (fun M ↦ M μ μ) $ mem_iff.mp Λ.2
simp at h
fin_cases μ <;>
rw [η_mul, mul_η, η_explicit] at h
<;> simpa using h
lemma time_comps (Λ : lorentzAlgebra) (i : Fin 3) : Λ.1 i.succ 0 = Λ.1 0 i.succ := by
have h := congrArg (fun M ↦ M 0 i.succ) $ mem_iff.mp Λ.2
simp at h
fin_cases i <;>
rw [η_mul, mul_η, η_explicit] at h <;>
simpa using h
lemma space_comps (Λ : lorentzAlgebra) (i j : Fin 3) :
Λ.1 i.succ j.succ = - Λ.1 j.succ i.succ := by
have h := congrArg (fun M ↦ M i.succ j.succ) $ mem_iff.mp Λ.2
simp at h
fin_cases i <;> fin_cases j <;>
rw [η_mul, mul_η, η_explicit] at h <;>
simpa using h.symm
2024-05-24 15:33:29 -04:00
end lorentzAlgebra
@[simps!]
instance spaceTimeAsLieRingModule : LieRingModule lorentzAlgebra SpaceTime where
2024-05-24 15:33:29 -04:00
bracket Λ x := Λ.1.mulVec x
add_lie Λ1 Λ2 x := by
simp [add_mulVec]
lie_add Λ x1 x2 := by
2024-05-29 16:42:04 -04:00
simp only
2024-05-24 15:33:29 -04:00
exact mulVec_add _ _ _
leibniz_lie Λ1 Λ2 x := by
simp [mulVec_add, Bracket.bracket, sub_mulVec]
@[simps!]
instance spaceTimeAsLieModule : LieModule lorentzAlgebra SpaceTime where
2024-05-24 15:33:29 -04:00
smul_lie r Λ x := by
simp [Bracket.bracket, smul_mulVec_assoc]
lie_smul r Λ x := by
simp [Bracket.bracket]
rw [mulVec_smul]
end SpaceTime