PhysLean/HepLean/SpaceTime/LorentzGroup/Basic.lean

259 lines
8.1 KiB
Text
Raw Normal View History

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.Metric
import HepLean.SpaceTime.AsSelfAdjointMatrix
/-!
# The Lorentz Group
We define the Lorentz group.
## TODO
- Show that the Lorentz is a Lie group.
- Prove that the restricted Lorentz group is equivalent to the connected component of the
identity.
- Define the continuous maps from `ℝ³` to `restrictedLorentzGroup` defining boosts.
## References
- http://home.ku.edu.tr/~amostafazadeh/phys517_518/phys517_2016f/Handouts/A_Jaffi_Lorentz_Group.pdf
-/
noncomputable section
namespace SpaceTime
open Manifold
open Matrix
open Complex
open ComplexConjugate
2024-06-15 17:08:08 -04:00
/-!
## Matrices which preserve `ηLin`
We start studying the properties of matrices which preserve `ηLin`.
These matrices form the Lorentz group, which we will define in the next section at `lorentzGroup`.
-/
/-- We say a matrix `Λ` preserves `ηLin` if for all `x` and `y`,
`ηLin (Λ *ᵥ x) (Λ *ᵥ y) = ηLin x y`. -/
def PreservesηLin (Λ : Matrix (Fin 4) (Fin 4) ) : Prop :=
∀ (x y : SpaceTime), ηLin (Λ *ᵥ x) (Λ *ᵥ y) = ηLin x y
namespace PreservesηLin
variable (Λ : Matrix (Fin 4) (Fin 4) )
lemma iff_norm : PreservesηLin Λ ↔
∀ (x : SpaceTime), ηLin (Λ *ᵥ x) (Λ *ᵥ x) = ηLin x x := by
refine Iff.intro (fun h x => h x x) (fun h x y => ?_)
have hp := h (x + y)
have hn := h (x - y)
rw [mulVec_add] at hp
rw [mulVec_sub] at hn
simp only [map_add, LinearMap.add_apply, map_sub, LinearMap.sub_apply] at hp hn
rw [ηLin_symm (Λ *ᵥ y) (Λ *ᵥ x), ηLin_symm y x] at hp hn
linear_combination hp / 4 + -1 * hn / 4
lemma iff_det_selfAdjoint : PreservesηLin Λ ↔
∀ (x : selfAdjoint (Matrix (Fin 2) (Fin 2) )),
det ((toSelfAdjointMatrix ∘ toLin stdBasis stdBasis Λ ∘ toSelfAdjointMatrix.symm) x).1
= det x.1 := by
rw [iff_norm]
apply Iff.intro
intro h x
have h1 := congrArg ofReal $ h (toSelfAdjointMatrix.symm x)
simpa [← det_eq_ηLin] using h1
intro h x
have h1 := h (toSelfAdjointMatrix x)
simpa [det_eq_ηLin] using h1
lemma iff_on_right : PreservesηLin Λ ↔
∀ (x y : SpaceTime), ηLin x ((η * Λᵀ * η * Λ) *ᵥ y) = ηLin x y := by
apply Iff.intro
2024-06-13 08:10:08 -04:00
intro h x y
have h1 := h x y
rw [ηLin_mulVec_left, mulVec_mulVec] at h1
exact h1
2024-06-13 08:10:08 -04:00
intro h x y
rw [ηLin_mulVec_left, mulVec_mulVec]
exact h x y
lemma iff_matrix : PreservesηLin Λ ↔ η * Λᵀ * η * Λ = 1 := by
rw [iff_on_right, ηLin_matrix_eq_identity_iff (η * Λᵀ * η * Λ)]
apply Iff.intro
· simp_all [ηLin, implies_true, iff_true, one_mulVec]
2024-06-13 08:10:08 -04:00
· exact fun a x y => Eq.symm (Real.ext_cauchy (congrArg Real.cauchy (a x y)))
lemma iff_matrix' : PreservesηLin Λ ↔ Λ * (η * Λᵀ * η) = 1 := by
rw [iff_matrix]
2024-06-13 08:10:08 -04:00
exact mul_eq_one_comm
lemma iff_transpose : PreservesηLin Λ ↔ PreservesηLin Λᵀ := by
apply Iff.intro
intro h
have h1 := congrArg transpose ((iff_matrix Λ).mp h)
rw [transpose_mul, transpose_mul, transpose_mul, η_transpose,
← mul_assoc, transpose_one] at h1
rw [iff_matrix' Λ.transpose, ← h1]
noncomm_ring
intro h
have h1 := congrArg transpose ((iff_matrix Λ.transpose).mp h)
rw [transpose_mul, transpose_mul, transpose_mul, η_transpose,
← mul_assoc, transpose_one, transpose_transpose] at h1
rw [iff_matrix', ← h1]
noncomm_ring
/-- The lift of a matrix which preserves `ηLin` to an invertible matrix. -/
def liftGL {Λ : Matrix (Fin 4) (Fin 4) } (h : PreservesηLin Λ) : GL (Fin 4) :=
⟨Λ, η * Λᵀ * η , (iff_matrix' Λ).mp h , (iff_matrix Λ).mp h⟩
2024-05-22 13:34:53 -04:00
lemma mul {Λ Λ' : Matrix (Fin 4) (Fin 4) } (h : PreservesηLin Λ) (h' : PreservesηLin Λ') :
PreservesηLin (Λ * Λ') := by
intro x y
rw [← mulVec_mulVec, ← mulVec_mulVec, h, h']
2024-05-22 13:34:53 -04:00
lemma one : PreservesηLin 1 := by
intro x y
simp
2024-05-22 13:34:53 -04:00
lemma η : PreservesηLin η := by
simp [iff_matrix, η_transpose, η_sq]
2024-05-22 13:34:53 -04:00
end PreservesηLin
2024-06-15 17:08:08 -04:00
/-!
## The Lorentz group
We define the Lorentz group as the set of matrices which preserve `ηLin`.
We show that the Lorentz group is indeed a group.
-/
2024-05-22 13:34:53 -04:00
/-- The Lorentz group is the subset of matrices which preserve ηLin. -/
def LorentzGroup : Type := {Λ : Matrix (Fin 4) (Fin 4) // PreservesηLin Λ}
2024-05-22 13:34:53 -04:00
@[simps mul_coe one_coe inv div]
instance lorentzGroupIsGroup : Group LorentzGroup where
2024-05-22 13:34:53 -04:00
mul A B := ⟨A.1 * B.1, PreservesηLin.mul A.2 B.2⟩
mul_assoc A B C := by
apply Subtype.eq
exact Matrix.mul_assoc A.1 B.1 C.1
one := ⟨1, PreservesηLin.one⟩
one_mul A := by
apply Subtype.eq
exact Matrix.one_mul A.1
mul_one A := by
apply Subtype.eq
exact Matrix.mul_one A.1
inv A := ⟨η * A.1ᵀ * η , PreservesηLin.mul (PreservesηLin.mul PreservesηLin.η
((PreservesηLin.iff_transpose A.1).mp A.2)) PreservesηLin.η⟩
mul_left_inv A := by
apply Subtype.eq
exact (PreservesηLin.iff_matrix A.1).mp A.2
/-- Notation for the Lorentz group. -/
scoped[SpaceTime] notation (name := lorentzGroup_notation) "𝓛" => LorentzGroup
2024-05-22 13:34:53 -04:00
/-- `lorentzGroup` has the subtype topology. -/
instance : TopologicalSpace LorentzGroup := instTopologicalSpaceSubtype
namespace LorentzGroup
lemma coe_inv (A : LorentzGroup) : (A⁻¹).1 = A.1⁻¹:= by
2024-05-22 13:34:53 -04:00
refine (inv_eq_left_inv ?h).symm
exact (PreservesηLin.iff_matrix A.1).mp A.2
2024-06-15 17:08:08 -04:00
/-- The transpose of an matrix in the Lorentz group is an element of the Lorentz group. -/
def transpose (Λ : LorentzGroup) : LorentzGroup := ⟨Λ.1ᵀ, (PreservesηLin.iff_transpose Λ.1).mp Λ.2⟩
2024-06-15 17:08:08 -04:00
/-!
## Lorentz group as a topological group
We now show that the Lorentz group is a topological group.
We do this by showing that the natrual map from the Lorentz group to `GL (Fin 4) ` is an
embedding.
-/
2024-05-22 13:34:53 -04:00
/-- The homomorphism of the Lorentz group into `GL (Fin 4) `. -/
def toGL : LorentzGroup →* GL (Fin 4) where
2024-05-22 13:34:53 -04:00
toFun A := ⟨A.1, (A⁻¹).1, mul_eq_one_comm.mpr $ (PreservesηLin.iff_matrix A.1).mp A.2,
(PreservesηLin.iff_matrix A.1).mp A.2⟩
map_one' := by
simp
rfl
map_mul' x y := by
simp only [lorentzGroupIsGroup, _root_.mul_inv_rev, coe_inv]
ext
rfl
lemma toGL_injective : Function.Injective toGL := by
intro A B h
apply Subtype.eq
rw [@Units.ext_iff] at h
2024-06-13 08:10:08 -04:00
exact h
2024-05-22 13:34:53 -04:00
/-- The homomorphism from the Lorentz Group into the monoid of matrices times the opposite of
the monoid of matrices. -/
@[simps!]
def toProd : LorentzGroup →* (Matrix (Fin 4) (Fin 4) ) × (Matrix (Fin 4) (Fin 4) )ᵐᵒᵖ :=
2024-05-22 13:34:53 -04:00
MonoidHom.comp (Units.embedProduct _) toGL
lemma toProd_eq_transpose_η : toProd A = (A.1, ⟨η * A.1ᵀ * η⟩) := rfl
lemma toProd_injective : Function.Injective toProd := by
intro A B h
rw [toProd_eq_transpose_η, toProd_eq_transpose_η] at h
rw [@Prod.mk.inj_iff] at h
apply Subtype.eq
exact h.1
lemma toProd_continuous : Continuous toProd := by
change Continuous (fun A => (A.1, ⟨η * A.1ᵀ * η⟩))
refine continuous_prod_mk.mpr (And.intro ?_ ?_)
exact continuous_iff_le_induced.mpr fun U a => a
refine Continuous.comp' ?_ ?_
exact MulOpposite.continuous_op
refine Continuous.matrix_mul (Continuous.matrix_mul continuous_const ?_) continuous_const
refine Continuous.matrix_transpose ?_
exact continuous_iff_le_induced.mpr fun U a => a
/-- The embedding from the Lorentz Group into the monoid of matrices times the opposite of
the monoid of matrices. -/
lemma toProd_embedding : Embedding toProd where
inj := toProd_injective
induced := by
refine (inducing_iff ⇑toProd).mp ?_
refine inducing_of_inducing_compose toProd_continuous continuous_fst ?hgf
exact (inducing_iff (Prod.fst ∘ ⇑toProd)).mpr rfl
/-- The embedding from the Lorentz Group into `GL (Fin 4) `. -/
lemma toGL_embedding : Embedding toGL.toFun where
inj := toGL_injective
induced := by
refine ((fun {X} {t t'} => TopologicalSpace.ext_iff.mpr) ?_).symm
intro s
rw [TopologicalSpace.ext_iff.mp toProd_embedding.induced s ]
rw [isOpen_induced_iff, isOpen_induced_iff]
2024-06-13 08:10:08 -04:00
exact exists_exists_and_eq_and
2024-05-22 13:34:53 -04:00
instance : TopologicalGroup LorentzGroup := Inducing.topologicalGroup toGL toGL_embedding.toInducing
end LorentzGroup
2024-05-22 13:34:53 -04:00
end SpaceTime