PhysLean/HepLean/SpaceTime/LorentzGroup/Boosts.lean

179 lines
6.3 KiB
Text
Raw Normal View History

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
2024-05-20 06:53:54 -04:00
import HepLean.SpaceTime.LorentzGroup.Proper
import Mathlib.Topology.Constructions
2024-06-25 07:06:32 -04:00
import HepLean.SpaceTime.FourVelocity
/-!
# Boosts
This file defines those Lorentz which are boosts.
2024-06-08 01:53:28 +02:00
We first define generalised boosts, which are restricted lorentz transformations taking
a four velocity `u` to a four velocity `v`.
2024-06-08 01:53:28 +02:00
A boost is the special case of a generalised boost when `u = stdBasis 0`.
## TODO
2024-06-08 01:53:28 +02:00
- Show that generalised boosts are in the restricted Lorentz group.
- Define boosts.
## References
- The main argument follows: Guillem Cobos, The Lorentz Group, 2015:
https://diposit.ub.edu/dspace/bitstream/2445/68763/2/memoria.pdf
-/
noncomputable section
namespace SpaceTime
namespace LorentzGroup
open FourVelocity
2024-06-08 01:53:28 +02:00
/-- An auxillary linear map used in the definition of a generalised boost. -/
def genBoostAux₁ (u v : FourVelocity) : SpaceTime →ₗ[] SpaceTime where
toFun x := (2 * ηLin x u) • v.1.1
map_add' x y := by
simp only [map_add, LinearMap.add_apply]
rw [mul_add, add_smul]
map_smul' c x := by
simp only [LinearMapClass.map_smul, LinearMap.smul_apply, smul_eq_mul,
RingHom.id_apply]
rw [← mul_assoc, mul_comm 2 c, mul_assoc, mul_smul]
2024-05-17 15:28:05 -04:00
/-- An auxillary linear map used in the definition of a genearlised boost. -/
def genBoostAux₂ (u v : FourVelocity) : SpaceTime →ₗ[] SpaceTime where
toFun x := - (ηLin x (u + v) / (1 + ηLin u v)) • (u + v)
map_add' x y := by
simp only
rw [ηLin.map_add, div_eq_mul_one_div]
rw [show (ηLin x + ηLin y) (↑u + ↑v) = ηLin x (u+v) + ηLin y (u+v) from rfl]
rw [add_mul, neg_add, add_smul, ← div_eq_mul_one_div, ← div_eq_mul_one_div]
map_smul' c x := by
simp only
rw [ηLin.map_smul]
rw [show (c • ηLin x) (↑u + ↑v) = c * ηLin x (u+v) from rfl]
rw [mul_div_assoc, neg_mul_eq_mul_neg, smul_smul]
rfl
2024-06-08 01:53:28 +02:00
/-- An generalised boost. This is a Lorentz transformation which takes the four velocity `u`
2024-05-17 15:28:05 -04:00
to `v`. -/
def genBoost (u v : FourVelocity) : SpaceTime →ₗ[] SpaceTime :=
LinearMap.id + genBoostAux₁ u v + genBoostAux₂ u v
namespace genBoost
2024-06-13 08:10:08 -04:00
/--
This lemma states that for a given four-velocity `u`, the general boost
transformation `genBoost u u` is equal to the identity linear map `LinearMap.id`.
-/
lemma self (u : FourVelocity) : genBoost u u = LinearMap.id := by
ext x
simp [genBoost]
rw [add_assoc]
rw [@add_right_eq_self]
rw [@add_eq_zero_iff_eq_neg]
rw [genBoostAux₁, genBoostAux₂]
simp only [LinearMap.coe_mk, AddHom.coe_mk, map_add, smul_add, neg_smul, neg_add_rev, neg_neg]
rw [← add_smul]
apply congr
apply congrArg
repeat rw [u.1.2]
field_simp
ring
rfl
2024-05-17 15:28:05 -04:00
/-- A generalised boost as a matrix. -/
def toMatrix (u v : FourVelocity) : Matrix (Fin 4) (Fin 4) :=
LinearMap.toMatrix stdBasis stdBasis (genBoost u v)
lemma toMatrix_mulVec (u v : FourVelocity) (x : SpaceTime) :
(toMatrix u v).mulVec x = genBoost u v x :=
LinearMap.toMatrix_mulVec_repr stdBasis stdBasis (genBoost u v) x
lemma toMatrix_apply (u v : FourVelocity) (i j : Fin 4) :
(toMatrix u v) i j =
η i i * (ηLin (stdBasis i) (stdBasis j) + 2 * ηLin (stdBasis j) u * ηLin (stdBasis i) v -
ηLin (stdBasis i) (u + v) * ηLin (stdBasis j) (u + v) / (1 + ηLin u v)) := by
rw [ηLin_matrix_stdBasis' j i (toMatrix u v), toMatrix_mulVec]
simp only [genBoost, genBoostAux₁, genBoostAux₂, map_add, smul_add, neg_smul, LinearMap.add_apply,
LinearMap.id_apply, LinearMap.coe_mk, AddHom.coe_mk, LinearMapClass.map_smul, smul_eq_mul,
map_neg, mul_eq_mul_left_iff]
apply Or.inl
ring
lemma toMatrix_continuous (u : FourVelocity) : Continuous (toMatrix u) := by
refine continuous_matrix ?_
intro i j
simp only [toMatrix_apply]
refine Continuous.comp' (continuous_mul_left (η i i)) ?hf
refine Continuous.sub ?_ ?_
refine Continuous.comp' (continuous_add_left ((ηLin (stdBasis i)) (stdBasis j))) ?_
refine Continuous.comp' (continuous_mul_left (2 * (ηLin (stdBasis j)) ↑u)) ?_
exact η_continuous _
refine Continuous.mul ?_ ?_
refine Continuous.mul ?_ ?_
simp only [(ηLin _).map_add]
refine Continuous.comp' ?_ ?_
exact continuous_add_left ((ηLin (stdBasis i)) ↑u)
exact η_continuous _
simp only [(ηLin _).map_add]
refine Continuous.comp' ?_ ?_
exact continuous_add_left _
exact η_continuous _
refine Continuous.inv₀ ?_ ?_
refine Continuous.comp' (continuous_add_left 1) ?_
exact η_continuous _
exact fun x => one_plus_ne_zero u x
lemma toMatrix_PreservesηLin (u v : FourVelocity) : PreservesηLin (toMatrix u v) := by
intro x y
rw [toMatrix_mulVec, toMatrix_mulVec, genBoost, genBoostAux₁, genBoostAux₂]
have h1 : (1 + (ηLin ↑u) ↑v) ≠ 0 := one_plus_ne_zero u v
simp only [map_add, smul_add, neg_smul, LinearMap.add_apply, LinearMap.id_coe,
id_eq, LinearMap.coe_mk, AddHom.coe_mk, LinearMapClass.map_smul, map_neg, LinearMap.smul_apply,
smul_eq_mul, LinearMap.neg_apply]
field_simp
rw [u.1.2, v.1.2, ηLin_symm v u, ηLin_symm u y, ηLin_symm v y]
ring
2024-05-17 15:28:05 -04:00
/-- A generalised boost as an element of the Lorentz Group. -/
def toLorentz (u v : FourVelocity) : LorentzGroup :=
2024-05-22 13:34:53 -04:00
⟨toMatrix u v, toMatrix_PreservesηLin u v⟩
lemma toLorentz_continuous (u : FourVelocity) : Continuous (toLorentz u) := by
2024-05-22 13:34:53 -04:00
refine Continuous.subtype_mk ?_ (fun x => toMatrix_PreservesηLin u x)
exact toMatrix_continuous u
2024-05-22 13:34:53 -04:00
lemma toLorentz_joined_to_1 (u v : FourVelocity) : Joined 1 (toLorentz u v) := by
obtain ⟨f, _⟩ := isPathConnected_FourVelocity.joinedIn u trivial v trivial
use ContinuousMap.comp ⟨toLorentz u, toLorentz_continuous u⟩ f
· simp only [ContinuousMap.toFun_eq_coe, ContinuousMap.comp_apply, ContinuousMap.coe_coe,
Path.source, ContinuousMap.coe_mk]
2024-05-22 13:34:53 -04:00
rw [@Subtype.ext_iff, toLorentz]
simp [PreservesηLin.liftGL, toMatrix, self u]
· simp
2024-05-20 16:20:26 -04:00
lemma toLorentz_in_connected_component_1 (u v : FourVelocity) :
toLorentz u v ∈ connectedComponent 1 :=
pathComponent_subset_component _ (toLorentz_joined_to_1 u v)
lemma isProper (u v : FourVelocity) : IsProper (toLorentz u v) :=
(isProper_on_connected_component (toLorentz_in_connected_component_1 u v)).mp id_IsProper
end genBoost
end LorentzGroup
end SpaceTime
end