PhysLean/HepLean/PerturbationTheory/Algebras/CrAnAlgebra/SuperCommute.lean

879 lines
38 KiB
Text
Raw Normal View History

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.Basic
2025-01-28 11:53:24 +00:00
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.Grading
/-!
# Super Commute
-/
namespace FieldSpecification
variable {𝓕 : FieldSpecification}
namespace CrAnAlgebra
/-!
## The super commutor on the CrAnAlgebra.
-/
open FieldStatistic
/-- The super commutor on the creation and annihlation algebra. For two bosonic operators
or a bosonic and fermionic operator this corresponds to the usual commutator
whilst for two fermionic operators this corresponds to the anti-commutator. -/
noncomputable def superCommuteF : 𝓕.CrAnAlgebra →ₗ[] 𝓕.CrAnAlgebra →ₗ[] 𝓕.CrAnAlgebra :=
Basis.constr ofCrAnListBasis fun φs =>
Basis.constr ofCrAnListBasis fun φs' =>
ofCrAnList (φs ++ φs') - 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnList (φs' ++ φs)
/-- The super commutor on the creation and annihlation algebra. For two bosonic operators
or a bosonic and fermionic operator this corresponds to the usual commutator
whilst for two fermionic operators this corresponds to the anti-commutator. -/
scoped[FieldSpecification.CrAnAlgebra] notation "[" φs "," φs' "]ₛca" => superCommuteF φs φs'
/-!
## The super commutor of different types of elements
-/
lemma superCommuteF_ofCrAnList_ofCrAnList (φs φs' : List 𝓕.CrAnStates) :
2025-01-23 15:06:11 +00:00
[ofCrAnList φs, ofCrAnList φs']ₛca =
ofCrAnList (φs ++ φs') - 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnList (φs' ++ φs) := by
rw [← ofListBasis_eq_ofList, ← ofListBasis_eq_ofList]
simp only [superCommuteF, Basis.constr_basis]
lemma superCommuteF_ofCrAnState_ofCrAnState (φ φ' : 𝓕.CrAnStates) :
2025-01-23 15:06:11 +00:00
[ofCrAnState φ, ofCrAnState φ']ₛca =
ofCrAnState φ * ofCrAnState φ' - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofCrAnState φ' * ofCrAnState φ := by
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton]
rw [superCommuteF_ofCrAnList_ofCrAnList, ofCrAnList_append]
congr
rw [ofCrAnList_append]
rw [FieldStatistic.ofList_singleton, FieldStatistic.ofList_singleton, smul_mul_assoc]
lemma superCommuteF_ofCrAnList_ofStatesList (φcas : List 𝓕.CrAnStates) (φs : List 𝓕.States) :
2025-01-23 15:06:11 +00:00
[ofCrAnList φcas, ofStateList φs]ₛca = ofCrAnList φcas * ofStateList φs -
𝓢(𝓕 |>ₛ φcas, 𝓕 |>ₛ φs) • ofStateList φs * ofCrAnList φcas := by
conv_lhs => rw [ofStateList_sum]
rw [map_sum]
conv_lhs =>
enter [2, x]
rw [superCommuteF_ofCrAnList_ofCrAnList, CrAnSection.statistics_eq_state_statistics,
ofCrAnList_append, ofCrAnList_append]
rw [Finset.sum_sub_distrib, ← Finset.mul_sum, ← Finset.smul_sum,
← Finset.sum_mul, ← ofStateList_sum]
simp
lemma superCommuteF_ofStateList_ofStatesList (φ : List 𝓕.States) (φs : List 𝓕.States) :
2025-01-23 15:06:11 +00:00
[ofStateList φ, ofStateList φs]ₛca = ofStateList φ * ofStateList φs -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofStateList φs * ofStateList φ := by
conv_lhs => rw [ofStateList_sum]
simp only [map_sum, LinearMap.coeFn_sum, Finset.sum_apply, instCommGroup.eq_1,
Algebra.smul_mul_assoc]
conv_lhs =>
enter [2, x]
rw [superCommuteF_ofCrAnList_ofStatesList]
simp only [instCommGroup.eq_1, CrAnSection.statistics_eq_state_statistics,
Algebra.smul_mul_assoc, Finset.sum_sub_distrib]
rw [← Finset.sum_mul, ← Finset.smul_sum, ← Finset.mul_sum, ← ofStateList_sum]
lemma superCommuteF_ofState_ofStatesList (φ : 𝓕.States) (φs : List 𝓕.States) :
2025-01-23 15:06:11 +00:00
[ofState φ, ofStateList φs]ₛca = ofState φ * ofStateList φs -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofStateList φs * ofState φ := by
rw [← ofStateList_singleton, superCommuteF_ofStateList_ofStatesList, ofStateList_singleton]
simp
lemma superCommuteF_ofStateList_ofState (φs : List 𝓕.States) (φ : 𝓕.States) :
2025-01-23 15:06:11 +00:00
[ofStateList φs, ofState φ]ₛca = ofStateList φs * ofState φ -
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * ofStateList φs := by
rw [← ofStateList_singleton, superCommuteF_ofStateList_ofStatesList, ofStateList_singleton]
simp
2025-01-30 06:24:17 +00:00
lemma superCommuteF_anPartF_crPartF (φ φ' : 𝓕.States) :
[anPartF φ, crPartF φ']ₛca =
anPartF φ * crPartF φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPartF φ' * anPartF φ := by
match φ, φ' with
2025-01-23 10:46:50 +00:00
| States.inAsymp φ, _ =>
simp
2025-01-23 10:46:50 +00:00
| _, States.outAsymp φ =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_posAsymp, map_zero, mul_zero, instCommGroup.eq_1, smul_zero, zero_mul,
sub_self]
| States.position φ, States.position φ' =>
2025-01-30 06:24:17 +00:00
simp only [anPartF_position, crPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-23 10:46:50 +00:00
| States.outAsymp φ, States.position φ' =>
2025-01-30 06:24:17 +00:00
simp only [anPartF_posAsymp, crPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-23 10:46:50 +00:00
| States.position φ, States.inAsymp φ' =>
2025-01-30 06:24:17 +00:00
simp only [anPartF_position, crPartF_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp only [List.singleton_append, instCommGroup.eq_1, crAnStatistics,
FieldStatistic.ofList_singleton, Function.comp_apply, crAnStatesToStates_prod, ←
ofCrAnList_append]
2025-01-23 10:46:50 +00:00
| States.outAsymp φ, States.inAsymp φ' =>
2025-01-30 06:24:17 +00:00
simp only [anPartF_posAsymp, crPartF_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-30 06:24:17 +00:00
lemma superCommuteF_crPartF_anPartF (φ φ' : 𝓕.States) :
[crPartF φ, anPartF φ']ₛca =
crPartF φ * anPartF φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
2025-01-30 06:24:17 +00:00
anPartF φ' * crPartF φ := by
match φ, φ' with
2025-01-23 10:46:50 +00:00
| States.outAsymp φ, _ =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_posAsymp, map_zero, LinearMap.zero_apply, zero_mul, instCommGroup.eq_1,
mul_zero, sub_self]
2025-01-23 10:46:50 +00:00
| _, States.inAsymp φ =>
2025-01-30 06:24:17 +00:00
simp only [anPartF_negAsymp, map_zero, mul_zero, instCommGroup.eq_1, smul_zero, zero_mul,
sub_self]
| States.position φ, States.position φ' =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_position, anPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-23 10:46:50 +00:00
| States.position φ, States.outAsymp φ' =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_position, anPartF_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-23 10:46:50 +00:00
| States.inAsymp φ, States.position φ' =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_negAsymp, anPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-23 10:46:50 +00:00
| States.inAsymp φ, States.outAsymp φ' =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_negAsymp, anPartF_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-30 06:24:17 +00:00
lemma superCommuteF_crPartF_crPartF (φ φ' : 𝓕.States) :
[crPartF φ, crPartF φ']ₛca =
crPartF φ * crPartF φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
2025-01-30 06:24:17 +00:00
crPartF φ' * crPartF φ := by
match φ, φ' with
2025-01-23 10:46:50 +00:00
| States.outAsymp φ, _ =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_posAsymp, map_zero, LinearMap.zero_apply, zero_mul, instCommGroup.eq_1,
mul_zero, sub_self]
2025-01-23 10:46:50 +00:00
| _, States.outAsymp φ =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_posAsymp, map_zero, mul_zero, instCommGroup.eq_1, smul_zero, zero_mul, sub_self]
| States.position φ, States.position φ' =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-23 10:46:50 +00:00
| States.position φ, States.inAsymp φ' =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_position, crPartF_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-23 10:46:50 +00:00
| States.inAsymp φ, States.position φ' =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_negAsymp, crPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-23 10:46:50 +00:00
| States.inAsymp φ, States.inAsymp φ' =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-30 06:24:17 +00:00
lemma superCommuteF_anPartF_anPartF (φ φ' : 𝓕.States) :
[anPartF φ, anPartF φ']ₛca =
anPartF φ * anPartF φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
2025-01-30 06:24:17 +00:00
anPartF φ' * anPartF φ := by
match φ, φ' with
2025-01-23 10:46:50 +00:00
| States.inAsymp φ, _ =>
simp
2025-01-23 10:46:50 +00:00
| _, States.inAsymp φ =>
simp
| States.position φ, States.position φ' =>
2025-01-30 06:24:17 +00:00
simp only [anPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-23 10:46:50 +00:00
| States.position φ, States.outAsymp φ' =>
2025-01-30 06:24:17 +00:00
simp only [anPartF_position, anPartF_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-23 10:46:50 +00:00
| States.outAsymp φ, States.position φ' =>
2025-01-30 06:24:17 +00:00
simp only [anPartF_posAsymp, anPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-23 10:46:50 +00:00
| States.outAsymp φ, States.outAsymp φ' =>
2025-01-30 06:24:17 +00:00
simp only [anPartF_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
2025-01-30 06:24:17 +00:00
lemma superCommuteF_crPartF_ofStateList (φ : 𝓕.States) (φs : List 𝓕.States) :
[crPartF φ, ofStateList φs]ₛca =
crPartF φ * ofStateList φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofStateList φs *
crPartF φ := by
match φ with
2025-01-23 10:46:50 +00:00
| States.inAsymp φ =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofStatesList]
simp [crAnStatistics]
| States.position φ =>
2025-01-30 06:24:17 +00:00
simp only [crPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofStatesList]
simp [crAnStatistics]
2025-01-23 10:46:50 +00:00
| States.outAsymp φ =>
simp
2025-01-30 06:24:17 +00:00
lemma superCommuteF_anPartF_ofStateList (φ : 𝓕.States) (φs : List 𝓕.States) :
[anPartF φ, ofStateList φs]ₛca =
anPartF φ * ofStateList φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) •
ofStateList φs * anPartF φ := by
match φ with
2025-01-23 10:46:50 +00:00
| States.inAsymp φ =>
simp
| States.position φ =>
2025-01-30 06:24:17 +00:00
simp only [anPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofStatesList]
simp [crAnStatistics]
2025-01-23 10:46:50 +00:00
| States.outAsymp φ =>
2025-01-30 06:24:17 +00:00
simp only [anPartF_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofStatesList]
simp [crAnStatistics]
2025-01-30 06:24:17 +00:00
lemma superCommuteF_crPartF_ofState (φ φ' : 𝓕.States) :
[crPartF φ, ofState φ']ₛca =
crPartF φ * ofState φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofState φ' * crPartF φ := by
rw [← ofStateList_singleton, superCommuteF_crPartF_ofStateList]
simp
2025-01-30 06:24:17 +00:00
lemma superCommuteF_anPartF_ofState (φ φ' : 𝓕.States) :
[anPartF φ, ofState φ']ₛca =
anPartF φ * ofState φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofState φ' * anPartF φ := by
rw [← ofStateList_singleton, superCommuteF_anPartF_ofStateList]
simp
/-!
## Mul equal superCommuteF
Lemmas which rewrite a multiplication of two elements of the algebra as their commuted
multiplication with a sign plus the super commutor.
-/
lemma ofCrAnList_mul_ofCrAnList_eq_superCommuteF (φs φs' : List 𝓕.CrAnStates) :
ofCrAnList φs * ofCrAnList φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnList φs' * ofCrAnList φs
2025-01-23 15:06:11 +00:00
+ [ofCrAnList φs, ofCrAnList φs']ₛca := by
rw [superCommuteF_ofCrAnList_ofCrAnList]
simp [ofCrAnList_append]
lemma ofCrAnState_mul_ofCrAnList_eq_superCommuteF (φ : 𝓕.CrAnStates) (φs' : List 𝓕.CrAnStates) :
ofCrAnState φ * ofCrAnList φs' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • ofCrAnList φs' * ofCrAnState φ
2025-01-23 15:06:11 +00:00
+ [ofCrAnState φ, ofCrAnList φs']ₛca := by
rw [← ofCrAnList_singleton, ofCrAnList_mul_ofCrAnList_eq_superCommuteF]
simp
lemma ofStateList_mul_ofStateList_eq_superCommuteF (φs φs' : List 𝓕.States) :
ofStateList φs * ofStateList φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofStateList φs' * ofStateList φs
2025-01-23 15:06:11 +00:00
+ [ofStateList φs, ofStateList φs']ₛca := by
rw [superCommuteF_ofStateList_ofStatesList]
simp
lemma ofState_mul_ofStateList_eq_superCommuteF (φ : 𝓕.States) (φs' : List 𝓕.States) :
ofState φ * ofStateList φs' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • ofStateList φs' * ofState φ
2025-01-23 15:06:11 +00:00
+ [ofState φ, ofStateList φs']ₛca := by
rw [superCommuteF_ofState_ofStatesList]
simp
lemma ofStateList_mul_ofState_eq_superCommuteF (φs : List 𝓕.States) (φ : 𝓕.States) :
ofStateList φs * ofState φ = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * ofStateList φs
2025-01-23 15:06:11 +00:00
+ [ofStateList φs, ofState φ]ₛca := by
rw [superCommuteF_ofStateList_ofState]
simp
2025-01-30 06:24:17 +00:00
lemma crPartF_mul_anPartF_eq_superCommuteF (φ φ' : 𝓕.States) :
crPartF φ * anPartF φ' =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPartF φ' * crPartF φ +
[crPartF φ, anPartF φ']ₛca := by
rw [superCommuteF_crPartF_anPartF]
simp
2025-01-30 06:24:17 +00:00
lemma anPartF_mul_crPartF_eq_superCommuteF (φ φ' : 𝓕.States) :
anPartF φ * crPartF φ' =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
2025-01-30 06:24:17 +00:00
crPartF φ' * anPartF φ +
[anPartF φ, crPartF φ']ₛca := by
rw [superCommuteF_anPartF_crPartF]
simp
2025-01-30 06:24:17 +00:00
lemma crPartF_mul_crPartF_eq_superCommuteF (φ φ' : 𝓕.States) :
crPartF φ * crPartF φ' =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPartF φ' * crPartF φ +
[crPartF φ, crPartF φ']ₛca := by
rw [superCommuteF_crPartF_crPartF]
simp
2025-01-30 06:24:17 +00:00
lemma anPartF_mul_anPartF_eq_superCommuteF (φ φ' : 𝓕.States) :
anPartF φ * anPartF φ' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPartF φ' * anPartF φ +
[anPartF φ, anPartF φ']ₛca := by
rw [superCommuteF_anPartF_anPartF]
simp
lemma ofCrAnList_mul_ofStateList_eq_superCommuteF (φs : List 𝓕.CrAnStates) (φs' : List 𝓕.States) :
ofCrAnList φs * ofStateList φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofStateList φs' * ofCrAnList φs
2025-01-23 15:06:11 +00:00
+ [ofCrAnList φs, ofStateList φs']ₛca := by
rw [superCommuteF_ofCrAnList_ofStatesList]
simp
/-!
## Symmetry of the super commutor.
-/
lemma superCommuteF_ofCrAnList_ofCrAnList_symm (φs φs' : List 𝓕.CrAnStates) :
2025-01-23 15:06:11 +00:00
[ofCrAnList φs, ofCrAnList φs']ₛca =
(- 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs')) • [ofCrAnList φs', ofCrAnList φs]ₛca := by
rw [superCommuteF_ofCrAnList_ofCrAnList, superCommuteF_ofCrAnList_ofCrAnList, smul_sub]
simp only [instCommGroup.eq_1, neg_smul, sub_neg_eq_add]
rw [smul_smul]
conv_rhs =>
rhs
rw [exchangeSign_symm, exchangeSign_mul_self]
simp only [one_smul]
abel
lemma superCommuteF_ofCrAnState_ofCrAnState_symm (φ φ' : 𝓕.CrAnStates) :
2025-01-23 15:06:11 +00:00
[ofCrAnState φ, ofCrAnState φ']ₛca =
(- 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ')) • [ofCrAnState φ', ofCrAnState φ]ₛca := by
rw [superCommuteF_ofCrAnState_ofCrAnState, superCommuteF_ofCrAnState_ofCrAnState]
rw [smul_sub]
simp only [instCommGroup.eq_1, Algebra.smul_mul_assoc, neg_smul, sub_neg_eq_add]
rw [smul_smul]
conv_rhs =>
rhs
rw [exchangeSign_symm, exchangeSign_mul_self]
simp only [one_smul]
abel
/-!
## Splitting the super commutor on lists into sums.
-/
lemma superCommuteF_ofCrAnList_ofCrAnList_cons (φ : 𝓕.CrAnStates) (φs φs' : List 𝓕.CrAnStates) :
2025-01-23 15:06:11 +00:00
[ofCrAnList φs, ofCrAnList (φ :: φs')]ₛca =
[ofCrAnList φs, ofCrAnState φ]ₛca * ofCrAnList φs' +
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ)
2025-01-23 15:06:11 +00:00
• ofCrAnState φ * [ofCrAnList φs, ofCrAnList φs']ₛca := by
rw [superCommuteF_ofCrAnList_ofCrAnList]
conv_rhs =>
lhs
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList, sub_mul, ← ofCrAnList_append]
rhs
rw [FieldStatistic.ofList_singleton, ofCrAnList_append, ofCrAnList_singleton, smul_mul_assoc,
mul_assoc, ← ofCrAnList_append]
conv_rhs =>
rhs
rw [superCommuteF_ofCrAnList_ofCrAnList, mul_sub, smul_mul_assoc]
simp only [instCommGroup.eq_1, List.cons_append, List.append_assoc, List.nil_append,
Algebra.mul_smul_comm, Algebra.smul_mul_assoc, sub_add_sub_cancel, sub_right_inj]
rw [← ofCrAnList_cons, smul_smul, FieldStatistic.ofList_cons_eq_mul]
simp only [instCommGroup, map_mul, mul_comm]
lemma superCommuteF_ofCrAnList_ofStateList_cons (φ : 𝓕.States) (φs : List 𝓕.CrAnStates)
2025-01-23 15:06:11 +00:00
(φs' : List 𝓕.States) : [ofCrAnList φs, ofStateList (φ :: φs')]ₛca =
[ofCrAnList φs, ofState φ]ₛca * ofStateList φs' +
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * [ofCrAnList φs, ofStateList φs']ₛca := by
rw [superCommuteF_ofCrAnList_ofStatesList]
conv_rhs =>
lhs
rw [← ofStateList_singleton, superCommuteF_ofCrAnList_ofStatesList, sub_mul, mul_assoc,
← ofStateList_append]
rhs
rw [FieldStatistic.ofList_singleton, ofStateList_singleton, smul_mul_assoc,
smul_mul_assoc, mul_assoc]
conv_rhs =>
rhs
rw [superCommuteF_ofCrAnList_ofStatesList, mul_sub, smul_mul_assoc]
simp only [instCommGroup, Algebra.smul_mul_assoc, List.singleton_append, Algebra.mul_smul_comm,
sub_add_sub_cancel, sub_right_inj]
rw [ofStateList_cons, mul_assoc, smul_smul, FieldStatistic.ofList_cons_eq_mul]
simp [mul_comm]
2025-01-24 11:09:25 +00:00
/--
Within the creation and annihilation algebra, we have that
2025-01-24 11:25:22 +00:00
`[φᶜᵃs, φᶜᵃ₀ … φᶜᵃₙ]ₛca = ∑ i, sᵢ • φᶜᵃs₀ … φᶜᵃᵢ₋₁ * [φᶜᵃs, φᶜᵃᵢ]ₛca * φᶜᵃᵢ₊₁ … φᶜᵃₙ`
2025-01-24 11:09:25 +00:00
where `sᵢ` is the exchange sign for `φᶜᵃs` and `φᶜᵃs₀ … φᶜᵃᵢ₋₁`.
-/
lemma superCommuteF_ofCrAnList_ofCrAnList_eq_sum (φs : List 𝓕.CrAnStates) :
2025-01-24 11:09:25 +00:00
(φs' : List 𝓕.CrAnStates) → [ofCrAnList φs, ofCrAnList φs']ₛca =
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs'.take n) •
2025-01-23 15:06:11 +00:00
ofCrAnList (φs'.take n) * [ofCrAnList φs, ofCrAnState (φs'.get n)]ₛca *
ofCrAnList (φs'.drop (n + 1))
| [] => by
simp [← ofCrAnList_nil, superCommuteF_ofCrAnList_ofCrAnList]
| φ :: φs' => by
rw [superCommuteF_ofCrAnList_ofCrAnList_cons, superCommuteF_ofCrAnList_ofCrAnList_eq_sum φs φs']
conv_rhs => erw [Fin.sum_univ_succ]
congr 1
· simp
· simp [Finset.mul_sum, smul_smul, ofCrAnList_cons, mul_assoc,
FieldStatistic.ofList_cons_eq_mul, mul_comm]
lemma superCommuteF_ofCrAnList_ofStateList_eq_sum (φs : List 𝓕.CrAnStates) : (φs' : List 𝓕.States) →
2025-01-23 15:06:11 +00:00
[ofCrAnList φs, ofStateList φs']ₛca =
2025-01-24 11:09:25 +00:00
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs'.take n) •
2025-01-23 15:06:11 +00:00
ofStateList (φs'.take n) * [ofCrAnList φs, ofState (φs'.get n)]ₛca *
ofStateList (φs'.drop (n + 1))
| [] => by
simp only [superCommuteF_ofCrAnList_ofStatesList, instCommGroup, ofList_empty,
exchangeSign_bosonic, one_smul, List.length_nil, Finset.univ_eq_empty, List.take_nil,
List.get_eq_getElem, List.drop_nil, Finset.sum_empty]
simp
| φ :: φs' => by
rw [superCommuteF_ofCrAnList_ofStateList_cons, superCommuteF_ofCrAnList_ofStateList_eq_sum φs φs']
conv_rhs => erw [Fin.sum_univ_succ]
congr 1
· simp
· simp [Finset.mul_sum, smul_smul, ofStateList_cons, mul_assoc,
FieldStatistic.ofList_cons_eq_mul, mul_comm]
lemma summerCommute_jacobi_ofCrAnList (φs1 φs2 φs3 : List 𝓕.CrAnStates) :
2025-01-29 16:06:28 +00:00
[ofCrAnList φs1, [ofCrAnList φs2, ofCrAnList φs3]ₛca]ₛca =
𝓢(𝓕 |>ₛ φs1, 𝓕 |>ₛ φs3) •
(- 𝓢(𝓕 |>ₛ φs2, 𝓕 |>ₛ φs3) • [ofCrAnList φs3, [ofCrAnList φs1, ofCrAnList φs2]ₛca]ₛca -
𝓢(𝓕 |>ₛ φs1, 𝓕 |>ₛ φs2) • [ofCrAnList φs2, [ofCrAnList φs3, ofCrAnList φs1]ₛca]ₛca) := by
repeat rw [superCommuteF_ofCrAnList_ofCrAnList]
2025-01-29 16:41:10 +00:00
simp only [instCommGroup, map_sub, map_smul, neg_smul]
repeat rw [superCommuteF_ofCrAnList_ofCrAnList]
2025-01-29 16:06:28 +00:00
simp only [instCommGroup.eq_1, ofList_append_eq_mul, List.append_assoc]
by_cases h1 : (𝓕 |>ₛ φs1) = bosonic <;>
by_cases h2 : (𝓕 |>ₛ φs2) = bosonic <;>
by_cases h3 : (𝓕 |>ₛ φs3) = bosonic
2025-01-29 16:41:10 +00:00
· simp only [h1, h2, h3, mul_self, bosonic_exchangeSign, one_smul, exchangeSign_bosonic, neg_sub]
2025-01-29 16:06:28 +00:00
abel
2025-01-29 16:41:10 +00:00
· simp only [h1, h2, bosonic_exchangeSign, one_smul, mul_bosonic, mul_self, map_one,
exchangeSign_bosonic, neg_sub]
2025-01-29 16:06:28 +00:00
abel
2025-01-29 16:41:10 +00:00
· simp only [h1, h3, mul_bosonic, bosonic_exchangeSign, one_smul, exchangeSign_bosonic, neg_sub,
mul_self, map_one]
2025-01-29 16:06:28 +00:00
abel
2025-01-29 16:41:10 +00:00
· simp only [neq_bosonic_iff_eq_fermionic] at h1 h2 h3
simp only [h1, h2, h3, mul_self, bosonic_exchangeSign, one_smul,
fermionic_exchangeSign_fermionic, neg_smul, neg_sub, bosonic_mul_fermionic, sub_neg_eq_add,
mul_bosonic, smul_add, exchangeSign_bosonic]
2025-01-29 16:06:28 +00:00
abel
2025-01-29 16:41:10 +00:00
· simp only [neq_bosonic_iff_eq_fermionic] at h1 h2 h3
simp only [h1, h2, h3, mul_self, map_one, one_smul, exchangeSign_bosonic, mul_bosonic,
bosonic_exchangeSign, bosonic_mul_fermionic, neg_sub]
2025-01-29 16:06:28 +00:00
abel
2025-01-29 16:41:10 +00:00
· simp only [neq_bosonic_iff_eq_fermionic] at h1 h2 h3
simp only [h1, h2, h3, bosonic_mul_fermionic, fermionic_exchangeSign_fermionic, neg_smul,
one_smul, sub_neg_eq_add, bosonic_exchangeSign, mul_bosonic, smul_add, exchangeSign_bosonic,
neg_sub, mul_self]
2025-01-29 16:06:28 +00:00
abel
2025-01-29 16:41:10 +00:00
· simp only [neq_bosonic_iff_eq_fermionic] at h1 h2 h3
simp only [h1, h2, h3, mul_bosonic, fermionic_exchangeSign_fermionic, neg_smul, one_smul,
sub_neg_eq_add, exchangeSign_bosonic, bosonic_mul_fermionic, smul_add, mul_self,
bosonic_exchangeSign, neg_sub]
2025-01-29 16:06:28 +00:00
abel
2025-01-29 16:41:10 +00:00
· simp only [neq_bosonic_iff_eq_fermionic] at h1 h2 h3
simp only [h1, h2, h3, mul_self, map_one, one_smul, fermionic_exchangeSign_fermionic, neg_smul,
neg_sub]
2025-01-29 16:06:28 +00:00
abel
2025-01-28 11:53:24 +00:00
/-!
## Interaction with grading.
-/
lemma superCommuteF_grade {a b : 𝓕.CrAnAlgebra} {f1 f2 : FieldStatistic}
2025-01-28 11:53:24 +00:00
(ha : a ∈ statisticSubmodule f1) (hb : b ∈ statisticSubmodule f2) :
[a, b]ₛca ∈ statisticSubmodule (f1 + f2) := by
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule f2) : Prop :=
2025-01-29 16:06:28 +00:00
[a, a2]ₛca ∈ statisticSubmodule (f1 + f2)
2025-01-28 11:53:24 +00:00
change p b hb
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs, rfl, hφs⟩ := hx
2025-01-29 16:41:10 +00:00
simp only [add_eq_mul, instCommGroup, p]
2025-01-28 11:53:24 +00:00
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule f1) : Prop :=
2025-01-29 16:06:28 +00:00
[a2, ofCrAnList φs]ₛca ∈ statisticSubmodule (f1 + f2)
2025-01-28 11:53:24 +00:00
change p a ha
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs', rfl, hφs'⟩ := hx
2025-01-29 16:41:10 +00:00
simp only [add_eq_mul, instCommGroup, p]
rw [superCommuteF_ofCrAnList_ofCrAnList]
2025-01-28 11:53:24 +00:00
apply Submodule.sub_mem _
· apply ofCrAnList_mem_statisticSubmodule_of
rw [ofList_append_eq_mul, hφs, hφs']
· apply Submodule.smul_mem
apply ofCrAnList_mem_statisticSubmodule_of
rw [ofList_append_eq_mul, hφs, hφs']
rw [mul_comm]
· simp [p]
· intro x y hx hy hp1 hp2
2025-01-29 16:41:10 +00:00
simp only [add_eq_mul, instCommGroup, map_add, LinearMap.add_apply, p]
2025-01-28 11:53:24 +00:00
exact Submodule.add_mem _ hp1 hp2
· intro c x hx hp1
2025-01-29 16:41:10 +00:00
simp only [add_eq_mul, instCommGroup, map_smul, LinearMap.smul_apply, p]
2025-01-28 11:53:24 +00:00
exact Submodule.smul_mem _ c hp1
· exact ha
· simp [p]
· intro x y hx hy hp1 hp2
2025-01-29 16:41:10 +00:00
simp only [add_eq_mul, instCommGroup, map_add, p]
2025-01-28 11:53:24 +00:00
exact Submodule.add_mem _ hp1 hp2
· intro c x hx hp1
2025-01-29 16:41:10 +00:00
simp only [add_eq_mul, instCommGroup, map_smul, p]
2025-01-28 11:53:24 +00:00
exact Submodule.smul_mem _ c hp1
· exact hb
lemma superCommuteF_bosonic_bosonic {a b : 𝓕.CrAnAlgebra}
2025-01-28 11:53:24 +00:00
(ha : a ∈ statisticSubmodule bosonic) (hb : b ∈ statisticSubmodule bosonic) :
[a, b]ₛca = a * b - b * a := by
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule bosonic) : Prop :=
2025-01-29 16:06:28 +00:00
[a, a2]ₛca = a * a2 - a2 * a
2025-01-28 11:53:24 +00:00
change p b hb
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs, rfl, hφs⟩ := hx
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule bosonic) : Prop :=
2025-01-29 16:06:28 +00:00
[a2, ofCrAnList φs]ₛca = a2 * ofCrAnList φs - ofCrAnList φs * a2
2025-01-28 11:53:24 +00:00
change p a ha
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs', rfl, hφs'⟩ := hx
2025-01-29 16:41:10 +00:00
simp only [p]
rw [superCommuteF_ofCrAnList_ofCrAnList]
2025-01-28 11:53:24 +00:00
simp [hφs, ofCrAnList_append]
· simp [p]
· intro x y hx hy hp1 hp2
2025-01-29 16:41:10 +00:00
simp_all only [p, map_add, LinearMap.add_apply, add_mul, mul_add]
2025-01-28 11:53:24 +00:00
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact ha
· simp [p]
· intro x y hx hy hp1 hp2
2025-01-29 16:41:10 +00:00
simp_all only [p, map_add, mul_add, add_mul]
2025-01-28 11:53:24 +00:00
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact hb
lemma superCommuteF_bosonic_fermionic {a b : 𝓕.CrAnAlgebra}
2025-01-28 11:53:24 +00:00
(ha : a ∈ statisticSubmodule bosonic) (hb : b ∈ statisticSubmodule fermionic) :
[a, b]ₛca = a * b - b * a := by
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule fermionic) : Prop :=
2025-01-29 16:06:28 +00:00
[a, a2]ₛca = a * a2 - a2 * a
2025-01-28 11:53:24 +00:00
change p b hb
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs, rfl, hφs⟩ := hx
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule bosonic) : Prop :=
2025-01-29 16:06:28 +00:00
[a2, ofCrAnList φs]ₛca = a2 * ofCrAnList φs - ofCrAnList φs * a2
2025-01-28 11:53:24 +00:00
change p a ha
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs', rfl, hφs'⟩ := hx
2025-01-29 16:41:10 +00:00
simp only [p]
rw [superCommuteF_ofCrAnList_ofCrAnList]
2025-01-28 11:53:24 +00:00
simp [hφs, hφs', ofCrAnList_append]
· simp [p]
· intro x y hx hy hp1 hp2
2025-01-29 16:41:10 +00:00
simp_all only [p, map_add, LinearMap.add_apply, add_mul, mul_add]
2025-01-28 11:53:24 +00:00
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact ha
· simp [p]
· intro x y hx hy hp1 hp2
2025-01-29 16:41:10 +00:00
simp_all only [p, map_add, mul_add, add_mul]
2025-01-28 11:53:24 +00:00
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact hb
lemma superCommuteF_fermionic_bonsonic {a b : 𝓕.CrAnAlgebra}
2025-01-28 11:53:24 +00:00
(ha : a ∈ statisticSubmodule fermionic) (hb : b ∈ statisticSubmodule bosonic) :
[a, b]ₛca = a * b - b * a := by
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule bosonic) : Prop :=
2025-01-29 16:06:28 +00:00
[a, a2]ₛca = a * a2 - a2 * a
2025-01-28 11:53:24 +00:00
change p b hb
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs, rfl, hφs⟩ := hx
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule fermionic) : Prop :=
2025-01-29 16:06:28 +00:00
[a2, ofCrAnList φs]ₛca = a2 * ofCrAnList φs - ofCrAnList φs * a2
2025-01-28 11:53:24 +00:00
change p a ha
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs', rfl, hφs'⟩ := hx
2025-01-29 16:41:10 +00:00
simp only [p]
rw [superCommuteF_ofCrAnList_ofCrAnList]
2025-01-28 11:53:24 +00:00
simp [hφs, hφs', ofCrAnList_append]
· simp [p]
· intro x y hx hy hp1 hp2
2025-01-29 16:41:10 +00:00
simp_all only [p, map_add, LinearMap.add_apply, add_mul, mul_add]
2025-01-28 11:53:24 +00:00
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact ha
· simp [p]
· intro x y hx hy hp1 hp2
2025-01-29 16:41:10 +00:00
simp_all only [map_add, mul_add, add_mul, p]
2025-01-28 11:53:24 +00:00
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact hb
lemma superCommuteF_bonsonic {a b : 𝓕.CrAnAlgebra} (hb : b ∈ statisticSubmodule bosonic) :
2025-01-28 11:53:24 +00:00
[a, b]ₛca = a * b - b * a := by
rw [← bosonicProj_add_fermionicProj a]
simp only [map_add, LinearMap.add_apply]
rw [superCommuteF_bosonic_bosonic (by simp) hb, superCommuteF_fermionic_bonsonic (by simp) hb]
2025-01-28 11:53:24 +00:00
simp only [add_mul, mul_add]
abel
lemma bosonic_superCommuteF {a b : 𝓕.CrAnAlgebra} (ha : a ∈ statisticSubmodule bosonic) :
2025-01-28 11:53:24 +00:00
[a, b]ₛca = a * b - b * a := by
rw [← bosonicProj_add_fermionicProj b]
simp only [map_add, LinearMap.add_apply]
rw [superCommuteF_bosonic_bosonic ha (by simp), superCommuteF_bosonic_fermionic ha (by simp)]
2025-01-28 11:53:24 +00:00
simp only [add_mul, mul_add]
abel
lemma superCommuteF_bonsonic_symm {a b : 𝓕.CrAnAlgebra} (hb : b ∈ statisticSubmodule bosonic) :
2025-01-28 11:53:24 +00:00
[a, b]ₛca = - [b, a]ₛca := by
rw [bosonic_superCommuteF hb, superCommuteF_bonsonic hb]
2025-01-28 11:53:24 +00:00
simp
lemma bonsonic_superCommuteF_symm {a b : 𝓕.CrAnAlgebra} (ha : a ∈ statisticSubmodule bosonic) :
2025-01-28 11:53:24 +00:00
[a, b]ₛca = - [b, a]ₛca := by
rw [bosonic_superCommuteF ha, superCommuteF_bonsonic ha]
2025-01-28 11:53:24 +00:00
simp
lemma superCommuteF_fermionic_fermionic {a b : 𝓕.CrAnAlgebra}
2025-01-28 11:53:24 +00:00
(ha : a ∈ statisticSubmodule fermionic) (hb : b ∈ statisticSubmodule fermionic) :
[a, b]ₛca = a * b + b * a := by
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule fermionic) : Prop :=
2025-01-29 16:06:28 +00:00
[a, a2]ₛca = a * a2 + a2 * a
2025-01-28 11:53:24 +00:00
change p b hb
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs, rfl, hφs⟩ := hx
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule fermionic) : Prop :=
2025-01-29 16:06:28 +00:00
[a2, ofCrAnList φs]ₛca = a2 * ofCrAnList φs + ofCrAnList φs * a2
2025-01-28 11:53:24 +00:00
change p a ha
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs', rfl, hφs'⟩ := hx
2025-01-29 16:41:10 +00:00
simp only [p]
rw [superCommuteF_ofCrAnList_ofCrAnList]
2025-01-28 11:53:24 +00:00
simp [hφs, hφs', ofCrAnList_append]
· simp [p]
· intro x y hx hy hp1 hp2
2025-01-29 16:41:10 +00:00
simp_all only [p, map_add, LinearMap.add_apply, add_mul, mul_add]
2025-01-28 11:53:24 +00:00
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact ha
· simp [p]
· intro x y hx hy hp1 hp2
2025-01-29 16:41:10 +00:00
simp_all only [map_add, mul_add, add_mul, p]
2025-01-28 11:53:24 +00:00
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact hb
lemma superCommuteF_fermionic_fermionic_symm {a b : 𝓕.CrAnAlgebra}
2025-01-28 11:53:24 +00:00
(ha : a ∈ statisticSubmodule fermionic) (hb : b ∈ statisticSubmodule fermionic) :
[a, b]ₛca = [b, a]ₛca := by
rw [superCommuteF_fermionic_fermionic ha hb]
rw [superCommuteF_fermionic_fermionic hb ha]
2025-01-28 11:53:24 +00:00
abel
lemma superCommuteF_expand_bosonicProj_fermionicProj (a b : 𝓕.CrAnAlgebra) :
[a, b]ₛca = bosonicProj a * bosonicProj b - bosonicProj b * bosonicProj a +
bosonicProj a * fermionicProj b - fermionicProj b * bosonicProj a +
fermionicProj a * bosonicProj b - bosonicProj b * fermionicProj a +
fermionicProj a * fermionicProj b + fermionicProj b * fermionicProj a := by
conv_lhs => rw [← bosonicProj_add_fermionicProj a, ← bosonicProj_add_fermionicProj b]
2025-01-29 16:41:10 +00:00
simp only [map_add, LinearMap.add_apply]
rw [superCommuteF_bonsonic (by simp),
superCommuteF_fermionic_bonsonic (by simp) (by simp),
superCommuteF_bosonic_fermionic (by simp) (by simp),
superCommuteF_fermionic_fermionic (by simp) (by simp)]
abel
lemma superCommuteF_ofCrAnList_ofCrAnList_bosonic_or_fermionic (φs φs' : List 𝓕.CrAnStates) :
2025-01-29 16:06:28 +00:00
[ofCrAnList φs, ofCrAnList φs']ₛca ∈ statisticSubmodule bosonic
2025-01-28 11:53:24 +00:00
[ofCrAnList φs, ofCrAnList φs']ₛca ∈ statisticSubmodule fermionic := by
by_cases h1 : (𝓕 |>ₛ φs) = bosonic <;> by_cases h2 : (𝓕 |>ₛ φs') = bosonic
· left
have h : bosonic = bosonic + bosonic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommuteF_grade
2025-01-28 11:53:24 +00:00
apply ofCrAnList_mem_statisticSubmodule_of _ _ h1
apply ofCrAnList_mem_statisticSubmodule_of _ _ h2
· right
have h : fermionic = bosonic + fermionic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommuteF_grade
2025-01-28 11:53:24 +00:00
apply ofCrAnList_mem_statisticSubmodule_of _ _ h1
apply ofCrAnList_mem_statisticSubmodule_of _ _ (by simpa using h2)
· right
have h : fermionic = fermionic + bosonic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommuteF_grade
2025-01-28 11:53:24 +00:00
apply ofCrAnList_mem_statisticSubmodule_of _ _ (by simpa using h1)
apply ofCrAnList_mem_statisticSubmodule_of _ _ h2
· left
have h : bosonic = fermionic + fermionic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommuteF_grade
2025-01-28 11:53:24 +00:00
apply ofCrAnList_mem_statisticSubmodule_of _ _ (by simpa using h1)
apply ofCrAnList_mem_statisticSubmodule_of _ _ (by simpa using h2)
lemma superCommuteF_ofCrAnState_ofCrAnState_bosonic_or_fermionic (φ φ' : 𝓕.CrAnStates) :
2025-01-29 16:06:28 +00:00
[ofCrAnState φ, ofCrAnState φ']ₛca ∈ statisticSubmodule bosonic
[ofCrAnState φ, ofCrAnState φ']ₛca ∈ statisticSubmodule fermionic := by
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton]
exact superCommuteF_ofCrAnList_ofCrAnList_bosonic_or_fermionic [φ] [φ']
lemma superCommuteF_superCommuteF_ofCrAnState_bosonic_or_fermionic (φ1 φ2 φ3 : 𝓕.CrAnStates) :
[ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca ∈ statisticSubmodule bosonic
[ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca ∈ statisticSubmodule fermionic := by
rcases superCommuteF_ofCrAnState_ofCrAnState_bosonic_or_fermionic φ2 φ3 with hs | hs
<;> rcases ofCrAnState_bosonic_or_fermionic φ1 with h1 | h1
· left
have h : bosonic = bosonic + bosonic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommuteF_grade h1 hs
· right
have h : fermionic = fermionic + bosonic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommuteF_grade h1 hs
· right
have h : fermionic = bosonic + fermionic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommuteF_grade h1 hs
· left
have h : bosonic = fermionic + fermionic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommuteF_grade h1 hs
2025-01-28 11:53:24 +00:00
lemma superCommuteF_bosonic_ofCrAnList_eq_sum (a : 𝓕.CrAnAlgebra) (φs : List 𝓕.CrAnStates)
2025-01-28 11:53:24 +00:00
(ha : a ∈ statisticSubmodule bosonic) :
[a, ofCrAnList φs]ₛca = ∑ (n : Fin φs.length),
ofCrAnList (φs.take n) * [a, ofCrAnState (φs.get n)]ₛca *
ofCrAnList (φs.drop (n + 1)) := by
let p (a : 𝓕.CrAnAlgebra) (ha : a ∈ statisticSubmodule bosonic) : Prop :=
2025-01-29 16:06:28 +00:00
[a, ofCrAnList φs]ₛca = ∑ (n : Fin φs.length),
2025-01-28 11:53:24 +00:00
ofCrAnList (φs.take n) * [a, ofCrAnState (φs.get n)]ₛca *
ofCrAnList (φs.drop (n + 1))
change p a ha
apply Submodule.span_induction (p := p)
· intro a ha
obtain ⟨φs, rfl, hφs⟩ := ha
2025-01-29 16:41:10 +00:00
simp only [List.get_eq_getElem, p]
rw [superCommuteF_ofCrAnList_ofCrAnList_eq_sum]
2025-01-28 11:53:24 +00:00
congr
funext n
simp [hφs]
· simp [p]
· intro x y hx hy hpx hpy
2025-01-29 16:41:10 +00:00
simp_all only [List.get_eq_getElem, map_add, LinearMap.add_apply, p]
2025-01-28 11:53:24 +00:00
rw [← Finset.sum_add_distrib]
congr
funext n
simp [mul_add, add_mul]
· intro c x hx hpx
simp_all [p, Finset.smul_sum]
· exact ha
lemma superCommuteF_fermionic_ofCrAnList_eq_sum (a : 𝓕.CrAnAlgebra) (φs : List 𝓕.CrAnStates)
2025-01-28 11:53:24 +00:00
(ha : a ∈ statisticSubmodule fermionic) :
2025-01-29 16:06:28 +00:00
[a, ofCrAnList φs]ₛca = ∑ (n : Fin φs.length), 𝓢(fermionic, 𝓕 |>ₛ φs.take n) •
2025-01-28 11:53:24 +00:00
ofCrAnList (φs.take n) * [a, ofCrAnState (φs.get n)]ₛca *
ofCrAnList (φs.drop (n + 1)) := by
let p (a : 𝓕.CrAnAlgebra) (ha : a ∈ statisticSubmodule fermionic) : Prop :=
2025-01-29 16:06:28 +00:00
[a, ofCrAnList φs]ₛca = ∑ (n : Fin φs.length), 𝓢(fermionic, 𝓕 |>ₛ φs.take n) •
2025-01-28 11:53:24 +00:00
ofCrAnList (φs.take n) * [a, ofCrAnState (φs.get n)]ₛca *
ofCrAnList (φs.drop (n + 1))
change p a ha
apply Submodule.span_induction (p := p)
· intro a ha
obtain ⟨φs, rfl, hφs⟩ := ha
2025-01-29 16:41:10 +00:00
simp only [instCommGroup, List.get_eq_getElem, Algebra.smul_mul_assoc, p]
rw [superCommuteF_ofCrAnList_ofCrAnList_eq_sum]
2025-01-28 11:53:24 +00:00
congr
funext n
simp [hφs]
· simp [p]
· intro x y hx hy hpx hpy
2025-01-29 16:41:10 +00:00
simp_all only [p, instCommGroup, List.get_eq_getElem, Algebra.smul_mul_assoc, map_add,
LinearMap.add_apply]
2025-01-28 11:53:24 +00:00
rw [← Finset.sum_add_distrib]
congr
funext n
simp [mul_add, add_mul]
· intro c x hx hpx
2025-01-29 16:41:10 +00:00
simp_all only [p, instCommGroup, List.get_eq_getElem, Algebra.smul_mul_assoc, map_smul,
LinearMap.smul_apply, Finset.smul_sum, Algebra.mul_smul_comm]
2025-01-28 11:53:24 +00:00
congr
funext x
simp [smul_smul, mul_comm]
· exact ha
lemma statistic_neq_of_superCommuteF_fermionic {φs φs' : List 𝓕.CrAnStates}
2025-01-28 11:53:24 +00:00
(h : [ofCrAnList φs, ofCrAnList φs']ₛca ∈ statisticSubmodule fermionic) :
(𝓕 |>ₛ φs) ≠ (𝓕 |>ₛ φs') [ofCrAnList φs, ofCrAnList φs']ₛca = 0 := by
by_cases h0 : [ofCrAnList φs, ofCrAnList φs']ₛca = 0
· simp [h0]
2025-01-29 16:41:10 +00:00
simp only [ne_eq, h0, or_false]
2025-01-28 11:53:24 +00:00
by_contra hn
refine h0 (eq_zero_of_bosonic_and_fermionic ?_ h)
by_cases hc : (𝓕 |>ₛ φs) = bosonic
· have h1 : bosonic = bosonic + bosonic := by
2025-01-29 16:41:10 +00:00
simp only [add_eq_mul, instCommGroup, mul_self]
2025-01-28 11:53:24 +00:00
rfl
rw [h1]
apply superCommuteF_grade
2025-01-28 11:53:24 +00:00
apply ofCrAnList_mem_statisticSubmodule_of _ _ hc
apply ofCrAnList_mem_statisticSubmodule_of _ _
rw [← hn, hc]
· have h1 : bosonic = fermionic + fermionic := by
2025-01-29 16:41:10 +00:00
simp only [add_eq_mul, instCommGroup, mul_self]
2025-01-28 11:53:24 +00:00
rfl
rw [h1]
apply superCommuteF_grade
2025-01-28 11:53:24 +00:00
apply ofCrAnList_mem_statisticSubmodule_of _ _
simpa using hc
apply ofCrAnList_mem_statisticSubmodule_of _ _
rw [← hn]
simpa using hc
end CrAnAlgebra
end FieldSpecification