90 lines
3.8 KiB
Text
90 lines
3.8 KiB
Text
![]() |
/-
|
|||
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|||
|
Authors: Joseph Tooby-Smith
|
|||
|
-/
|
|||
|
import Mathlib.LinearAlgebra.StdBasis
|
|||
|
import HepLean.SpaceTime.LorentzTensor.Basic
|
|||
|
import HepLean.SpaceTime.LorentzTensor.IndexNotation.Basic
|
|||
|
/-!
|
|||
|
|
|||
|
# Einstein notation for real tensors
|
|||
|
|
|||
|
Einstein notation is a specific example of index notation, with only one color.
|
|||
|
|
|||
|
In this file we define Einstein notation for generic ring `R`.
|
|||
|
|
|||
|
-/
|
|||
|
|
|||
|
open TensorProduct
|
|||
|
|
|||
|
/-- Einstein tensors have only one color, corresponding to a `down` index. . -/
|
|||
|
def einsteinTensorColor : TensorColor where
|
|||
|
Color := Unit
|
|||
|
τ a := a
|
|||
|
τ_involutive μ := by rfl
|
|||
|
|
|||
|
instance : Fintype einsteinTensorColor.Color := Unit.fintype
|
|||
|
|
|||
|
instance : DecidableEq einsteinTensorColor.Color := instDecidableEqPUnit
|
|||
|
|
|||
|
variable {R : Type} [CommSemiring R]
|
|||
|
|
|||
|
|
|||
|
/-- The `TensorStructure` associated with `n`-dimensional tensors. -/
|
|||
|
noncomputable def einsteinTensor (R : Type) [CommSemiring R] (n : ℕ) : TensorStructure R where
|
|||
|
toTensorColor := einsteinTensorColor
|
|||
|
ColorModule _ := Fin n → R
|
|||
|
colorModule_addCommMonoid _ := Pi.addCommMonoid
|
|||
|
colorModule_module _ := Pi.Function.module (Fin n) R R
|
|||
|
contrDual _ := TensorProduct.lift (Fintype.total R R)
|
|||
|
contrDual_symm a x y := by
|
|||
|
simp only [lift.tmul, Fintype.total_apply, smul_eq_mul, mul_comm, Equiv.cast_refl,
|
|||
|
Equiv.refl_apply]
|
|||
|
unit a := ∑ i, Pi.basisFun R (Fin n) i ⊗ₜ[R] Pi.basisFun R (Fin n) i
|
|||
|
unit_rid a x:= by
|
|||
|
simp only [Pi.basisFun_apply]
|
|||
|
rw [tmul_sum, map_sum]
|
|||
|
trans ∑ i, x i • Pi.basisFun R (Fin n) i
|
|||
|
· refine Finset.sum_congr rfl (fun i _ => ?_)
|
|||
|
simp only [TensorStructure.contrLeftAux, LinearEquiv.refl_toLinearMap, LinearMap.coe_comp,
|
|||
|
LinearEquiv.coe_coe, Function.comp_apply, assoc_symm_tmul, map_tmul, lift.tmul,
|
|||
|
Fintype.total_apply, LinearMap.stdBasis_apply', smul_eq_mul, ite_mul, one_mul, zero_mul,
|
|||
|
Finset.sum_ite_eq, Finset.mem_univ, ↓reduceIte, LinearMap.id_coe, id_eq, lid_tmul,
|
|||
|
Pi.basisFun_apply]
|
|||
|
· funext a
|
|||
|
simp only [Pi.basisFun_apply, Finset.sum_apply, Pi.smul_apply, LinearMap.stdBasis_apply',
|
|||
|
smul_eq_mul, mul_ite, mul_one, mul_zero, Finset.sum_ite_eq', Finset.mem_univ, ↓reduceIte]
|
|||
|
metric a := ∑ i, Pi.basisFun R (Fin n) i ⊗ₜ[R] Pi.basisFun R (Fin n) i
|
|||
|
metric_dual a := by
|
|||
|
simp only [Pi.basisFun_apply, map_sum, comm_tmul]
|
|||
|
rw [tmul_sum, map_sum]
|
|||
|
refine Finset.sum_congr rfl (fun i _ => ?_)
|
|||
|
rw [sum_tmul, map_sum, Fintype.sum_eq_single i]
|
|||
|
· simp only [TensorStructure.contrMidAux, LinearEquiv.refl_toLinearMap,
|
|||
|
TensorStructure.contrLeftAux, LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply,
|
|||
|
assoc_tmul, map_tmul, LinearMap.id_coe, id_eq, assoc_symm_tmul, lift.tmul,
|
|||
|
Fintype.total_apply, LinearMap.stdBasis_apply', smul_eq_mul, mul_ite, mul_one, mul_zero,
|
|||
|
Finset.sum_ite_eq, Finset.mem_univ, ↓reduceIte, lid_tmul, one_smul]
|
|||
|
· intro x hi
|
|||
|
simp only [TensorStructure.contrMidAux, LinearEquiv.refl_toLinearMap,
|
|||
|
TensorStructure.contrLeftAux, LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply,
|
|||
|
assoc_tmul, map_tmul, LinearMap.id_coe, id_eq, assoc_symm_tmul, lift.tmul,
|
|||
|
Fintype.total_apply, LinearMap.stdBasis_apply', smul_eq_mul, mul_ite, mul_one, mul_zero,
|
|||
|
Finset.sum_ite_eq, Finset.mem_univ, ↓reduceIte, lid_tmul, ite_smul, one_smul, zero_smul]
|
|||
|
rw [if_neg]
|
|||
|
simp only [tmul_zero]
|
|||
|
exact id (Ne.symm hi)
|
|||
|
|
|||
|
instance : IndexNotation einsteinTensorColor.Color where
|
|||
|
charList := {'ᵢ'}
|
|||
|
notaEquiv :=
|
|||
|
⟨fun _ => ⟨'ᵢ', Finset.mem_singleton.mpr rfl⟩,
|
|||
|
fun _ => Unit.unit,
|
|||
|
fun _ => rfl,
|
|||
|
by
|
|||
|
intro c
|
|||
|
have hc2 := c.2
|
|||
|
simp only [↓Char.isValue, Finset.mem_singleton] at hc2
|
|||
|
exact SetCoe.ext (id (Eq.symm hc2))⟩
|