PhysLean/HepLean/PerturbationTheory/WickContraction/Uncontracted.lean

68 lines
2.1 KiB
Text
Raw Normal View History

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.WickContraction.Basic
/-!
# Uncontracted elements
-/
open FieldSpecification
variable {𝓕 : FieldSpecification}
namespace WickContraction
variable {n : } (c : WickContraction n)
open HepLean.List
/-- Given a Wick contraction, the finset of elements of `Fin n` which are not contracted. -/
def uncontracted : Finset (Fin n) := Finset.filter (fun i => c.getDual? i = none) (Finset.univ)
lemma congr_uncontracted {n m : } (c : WickContraction n) (h : n = m) :
(c.congr h).uncontracted = Finset.map (finCongr h).toEmbedding c.uncontracted := by
subst h
simp
/-- The equivalence of `Option c.uncontracted` for two propositionally equal Wick contractions. -/
def uncontractedCongr {c c': WickContraction n} (h : c = c') :
Option c.uncontracted ≃ Option c'.uncontracted :=
Equiv.optionCongr (Equiv.subtypeEquivRight (by rw [h]; simp))
@[simp]
lemma uncontractedCongr_none {c c': WickContraction n} (h : c = c') :
(uncontractedCongr h) none = none := by
simp [uncontractedCongr]
@[simp]
lemma uncontractedCongr_some {c c': WickContraction n} (h : c = c') (i : c.uncontracted) :
(uncontractedCongr h) (some i) = some (Equiv.subtypeEquivRight (by rw [h]; simp) i) := by
simp [uncontractedCongr]
lemma mem_uncontracted_iff_not_contracted (i : Fin n) :
i ∈ c.uncontracted ↔ ∀ p ∈ c.1, i ∉ p := by
simp only [uncontracted, getDual?, Finset.mem_filter, Finset.mem_univ, true_and]
apply Iff.intro
· intro h p hp
have hp := c.2.1 p hp
rw [Finset.card_eq_two] at hp
obtain ⟨a, b, ha, hb, hab⟩ := hp
rw [Fin.find_eq_none_iff] at h
by_contra hn
simp only [Finset.mem_insert, Finset.mem_singleton] at hn
rcases hn with hn | hn
· subst hn
exact h b hp
· subst hn
rw [Finset.pair_comm] at hp
exact h a hp
· intro h
rw [Fin.find_eq_none_iff]
by_contra hn
simp only [not_forall, Decidable.not_not] at hn
obtain ⟨j, hj⟩ := hn
apply h {i, j} hj
simp
end WickContraction