177 lines
7.6 KiB
Text
177 lines
7.6 KiB
Text
![]() |
/-
|
|||
|
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
|
Released under Apache 2.0 license.
|
|||
|
Authors: Joseph Tooby-Smith
|
|||
|
-/
|
|||
|
import HepLean.FlavorPhysics.CKMMatrix.Basic
|
|||
|
import HepLean.FlavorPhysics.CKMMatrix.Rows
|
|||
|
import HepLean.FlavorPhysics.CKMMatrix.PhaseFreedom
|
|||
|
import HepLean.FlavorPhysics.CKMMatrix.Ratios
|
|||
|
import HepLean.FlavorPhysics.CKMMatrix.StandardParameters
|
|||
|
import Mathlib.Analysis.SpecialFunctions.Complex.Arg
|
|||
|
|
|||
|
open Matrix Complex
|
|||
|
open ComplexConjugate
|
|||
|
open CKMMatrix
|
|||
|
|
|||
|
|
|||
|
noncomputable section
|
|||
|
|
|||
|
@[simps!]
|
|||
|
def jarlskogComplexCKM (V : CKMMatrix) : ℂ :=
|
|||
|
[V]us * [V]cb * conj [V]ub * conj [V]cs
|
|||
|
|
|||
|
lemma jarlskogComplexCKM_equiv (V U : CKMMatrix) (h : V ≈ U) :
|
|||
|
jarlskogComplexCKM V = jarlskogComplexCKM U := by
|
|||
|
obtain ⟨a, b, c, e, f, g, h⟩ := h
|
|||
|
change V = phaseShiftApply U a b c e f g at h
|
|||
|
rw [h]
|
|||
|
simp only [jarlskogComplexCKM, Fin.isValue, phaseShiftApply.ub,
|
|||
|
phaseShiftApply.us, phaseShiftApply.cb, phaseShiftApply.cs]
|
|||
|
simp [← exp_conj, conj_ofReal, exp_add, exp_neg]
|
|||
|
have ha : cexp (↑a * I) ≠ 0 := exp_ne_zero _
|
|||
|
have hb : cexp (↑b * I) ≠ 0 := exp_ne_zero _
|
|||
|
have hf : cexp (↑f * I) ≠ 0 := exp_ne_zero _
|
|||
|
have hg : cexp (↑g * I) ≠ 0 := exp_ne_zero _
|
|||
|
field_simp
|
|||
|
ring
|
|||
|
|
|||
|
def inv₁ (V : Quotient CKMMatrixSetoid) : ℝ :=
|
|||
|
VusAbs V ^ 2 * VubAbs V ^ 2 * VcbAbs V ^2 /(VudAbs V ^ 2 + VusAbs V ^2)
|
|||
|
|
|||
|
lemma inv₁_sP (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ℝ) (h1 : 0 ≤ Real.sin θ₁₂)
|
|||
|
(h2 : 0 ≤ Real.cos θ₁₃) (h3 : 0 ≤ Real.sin θ₂₃) (h4 : 0 ≤ Real.cos θ₁₂) :
|
|||
|
inv₁ ⟦sP θ₁₂ θ₁₃ θ₂₃ δ₁₃⟧ =
|
|||
|
Real.sin θ₁₂ ^ 2 * Real.cos θ₁₃ ^ 2 * Real.sin θ₁₃ ^ 2 * Real.sin θ₂₃ ^ 2 := by
|
|||
|
simp only [inv₁, VusAbs, VAbs, VAbs', Fin.isValue, sP, standardParameterizationAsMatrix,
|
|||
|
neg_mul, Quotient.lift_mk, cons_val', cons_val_one, head_cons,
|
|||
|
empty_val', cons_val_fin_one, cons_val_zero, _root_.map_mul, VubAbs, cons_val_two, tail_cons,
|
|||
|
VcbAbs, VudAbs, Complex.abs_ofReal]
|
|||
|
by_cases hx : Real.cos θ₁₃ ≠ 0
|
|||
|
·
|
|||
|
rw [Complex.abs_exp]
|
|||
|
simp
|
|||
|
rw [_root_.abs_of_nonneg h1, _root_.abs_of_nonneg h3, _root_.abs_of_nonneg h2,
|
|||
|
_root_.abs_of_nonneg h4]
|
|||
|
simp [sq]
|
|||
|
ring_nf
|
|||
|
nth_rewrite 2 [Real.sin_sq θ₁₂]
|
|||
|
ring_nf
|
|||
|
field_simp
|
|||
|
ring
|
|||
|
· simp at hx
|
|||
|
rw [hx]
|
|||
|
simp
|
|||
|
|
|||
|
|
|||
|
|
|||
|
@[simp]
|
|||
|
def jarlskogComplex : Quotient CKMMatrixSetoid → ℂ :=
|
|||
|
Quotient.lift jarlskogComplexCKM jarlskogComplexCKM_equiv
|
|||
|
|
|||
|
-- bad name
|
|||
|
def expδ₁₃ (V : Quotient CKMMatrixSetoid) : ℂ :=
|
|||
|
jarlskogComplex V + inv₁ V
|
|||
|
|
|||
|
lemma expδ₁₃_sP (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ℝ) (h1 : 0 ≤ Real.sin θ₁₂)
|
|||
|
(h2 : 0 ≤ Real.cos θ₁₃) (h3 : 0 ≤ Real.sin θ₂₃) (h4 : 0 ≤ Real.cos θ₁₂) :
|
|||
|
expδ₁₃ ⟦sP θ₁₂ θ₁₃ θ₂₃ δ₁₃⟧ =
|
|||
|
sin θ₁₂ * cos θ₁₃ ^ 2 * sin θ₂₃ * sin θ₁₃ * cos θ₁₂ * cos θ₂₃ * cexp (I * δ₁₃) := by
|
|||
|
rw [expδ₁₃]
|
|||
|
rw [inv₁_sP _ _ _ _ h1 h2 h3 h4 ]
|
|||
|
simp only [expδ₁₃, jarlskogComplex, sP, standardParameterizationAsMatrix, neg_mul,
|
|||
|
Quotient.lift_mk, jarlskogComplexCKM, Fin.isValue, cons_val', cons_val_one, head_cons,
|
|||
|
empty_val', cons_val_fin_one, cons_val_zero, cons_val_two, tail_cons, _root_.map_mul, ←
|
|||
|
exp_conj, map_neg, conj_I, conj_ofReal, neg_neg, map_sub]
|
|||
|
simp
|
|||
|
ring_nf
|
|||
|
rw [exp_neg]
|
|||
|
have h1 : cexp (I * δ₁₃) ≠ 0 := exp_ne_zero _
|
|||
|
field_simp
|
|||
|
|
|||
|
|
|||
|
lemma expδ₁₃_sP_V (V : CKMMatrix) (δ₁₃ : ℝ) :
|
|||
|
expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ =
|
|||
|
sin (θ₁₂ ⟦V⟧) * cos (θ₁₃ ⟦V⟧) ^ 2 * sin (θ₂₃ ⟦V⟧) * sin (θ₁₃ ⟦V⟧)
|
|||
|
* cos (θ₁₂ ⟦V⟧) * cos (θ₂₃ ⟦V⟧) * cexp (I * δ₁₃) := by
|
|||
|
refine expδ₁₃_sP _ _ _ _ ?_ ?_ ?_ ?_
|
|||
|
rw [S₁₂_eq_sin_θ₁₂]
|
|||
|
exact S₁₂_nonneg _
|
|||
|
exact Real.cos_arcsin_nonneg _
|
|||
|
rw [S₂₃_eq_sin_θ₂₃]
|
|||
|
exact S₂₃_nonneg _
|
|||
|
exact Real.cos_arcsin_nonneg _
|
|||
|
|
|||
|
|
|||
|
lemma expδ₁₃_eq_zero (V : CKMMatrix) (δ₁₃ : ℝ) :
|
|||
|
expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ = 0 ↔
|
|||
|
VudAbs ⟦V⟧ = 0 ∨ VubAbs ⟦V⟧ = 0 ∨ VusAbs ⟦V⟧ = 0 ∨ VcbAbs ⟦V⟧ = 0 ∨ VtbAbs ⟦V⟧ = 0 := by
|
|||
|
rw [VudAbs_eq_C₁₂_mul_C₁₃, VubAbs_eq_S₁₃, VusAbs_eq_S₁₂_mul_C₁₃, VcbAbs_eq_S₂₃_mul_C₁₃, VtbAbs_eq_C₂₃_mul_C₁₃,
|
|||
|
← ofReal_inj,
|
|||
|
← ofReal_inj, ← ofReal_inj, ← ofReal_inj, ← ofReal_inj]
|
|||
|
simp only [ofReal_mul]
|
|||
|
rw [← S₁₃_eq_ℂsin_θ₁₃, ← S₁₂_eq_ℂsin_θ₁₂, ← S₂₃_eq_ℂsin_θ₂₃,
|
|||
|
← C₁₃_eq_ℂcos_θ₁₃, ← C₂₃_eq_ℂcos_θ₂₃,← C₁₂_eq_ℂcos_θ₁₂]
|
|||
|
simp
|
|||
|
rw [expδ₁₃_sP_V]
|
|||
|
simp
|
|||
|
have h1 := exp_ne_zero (I * δ₁₃)
|
|||
|
simp_all
|
|||
|
aesop
|
|||
|
|
|||
|
lemma inv₂_V_arg (V : CKMMatrix) (δ₁₃ : ℝ)
|
|||
|
(h1 : expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ ≠ 0 ) :
|
|||
|
cexp (arg (expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) * I) =
|
|||
|
cexp (δ₁₃ * I) := by
|
|||
|
have h1a := expδ₁₃_sP_V V δ₁₃
|
|||
|
have habs : Complex.abs (expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) =
|
|||
|
sin (θ₁₂ ⟦V⟧) * cos (θ₁₃ ⟦V⟧) ^ 2 * sin (θ₂₃ ⟦V⟧) * sin (θ₁₃ ⟦V⟧)
|
|||
|
* cos (θ₁₂ ⟦V⟧) * cos (θ₂₃ ⟦V⟧) := by
|
|||
|
rw [h1a]
|
|||
|
simp [abs_exp]
|
|||
|
rw [complexAbs_sin_θ₁₃, complexAbs_cos_θ₁₃, complexAbs_sin_θ₁₂, complexAbs_cos_θ₁₂,
|
|||
|
complexAbs_sin_θ₂₃, complexAbs_cos_θ₂₃]
|
|||
|
have h2 : expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ =
|
|||
|
Complex.abs (expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) * exp (δ₁₃ * I) := by
|
|||
|
rw [habs, h1a]
|
|||
|
ring_nf
|
|||
|
nth_rewrite 1 [← abs_mul_exp_arg_mul_I (expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ )] at h2
|
|||
|
have habs_neq_zero : (Complex.abs (expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) : ℂ) ≠ 0 := by
|
|||
|
simp
|
|||
|
exact h1
|
|||
|
rw [← mul_right_inj' habs_neq_zero]
|
|||
|
rw [← h2]
|
|||
|
|
|||
|
def δ₁₃ (V : Quotient CKMMatrixSetoid) : ℝ := arg (expδ₁₃ V)
|
|||
|
|
|||
|
theorem eq_standardParameterization_δ₃ (V : CKMMatrix) :
|
|||
|
V ≈ sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) (δ₁₃ ⟦V⟧) := by
|
|||
|
obtain ⟨δ₁₃', hδ₃⟩ := exists_standardParameterization V
|
|||
|
have hSV := (Quotient.eq.mpr (hδ₃))
|
|||
|
by_cases h : expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃'⟧ ≠ 0
|
|||
|
have h1 := inv₂_V_arg V δ₁₃' h
|
|||
|
have h2 := eq_phases_sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃'
|
|||
|
(δ₁₃ ⟦V⟧) (by rw [← h1, ← hSV, δ₁₃])
|
|||
|
rw [h2] at hδ₃
|
|||
|
exact hδ₃
|
|||
|
simp at h
|
|||
|
have h1 : δ₁₃ ⟦V⟧ = 0 := by
|
|||
|
rw [hSV, δ₁₃, h]
|
|||
|
simp
|
|||
|
rw [h1]
|
|||
|
rw [expδ₁₃_eq_zero, Vs_zero_iff_cos_sin_zero] at h
|
|||
|
cases' h with h h
|
|||
|
exact phaseShiftEquivRelation.trans hδ₃ (sP_cos_θ₁₂_eq_zero δ₁₃' h )
|
|||
|
cases' h with h h
|
|||
|
exact phaseShiftEquivRelation.trans hδ₃ (sP_cos_θ₁₃_eq_zero δ₁₃' h )
|
|||
|
cases' h with h h
|
|||
|
exact phaseShiftEquivRelation.trans hδ₃ (sP_cos_θ₂₃_eq_zero δ₁₃' h )
|
|||
|
cases' h with h h
|
|||
|
exact phaseShiftEquivRelation.trans hδ₃ (sP_sin_θ₁₂_eq_zero δ₁₃' h )
|
|||
|
cases' h with h h
|
|||
|
exact phaseShiftEquivRelation.trans hδ₃ (sP_sin_θ₁₃_eq_zero δ₁₃' h )
|
|||
|
exact phaseShiftEquivRelation.trans hδ₃ (sP_sin_θ₂₃_eq_zero δ₁₃' h )
|
|||
|
|
|||
|
|
|||
|
end
|