feat: Wick's theorem for normal order
This commit is contained in:
parent
12d36dc1d9
commit
006e29fd08
11 changed files with 1055 additions and 2 deletions
|
@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.TimeOrder
|
||||
import HepLean.PerturbationTheory.Algebras.FieldOpAlgebra.Basic
|
||||
import HepLean.PerturbationTheory.Algebras.FieldOpAlgebra.SuperCommute
|
||||
/-!
|
||||
|
||||
# Time Ordering on Field operator algebra
|
||||
|
@ -429,5 +429,80 @@ lemma timeOrder_eq_maxTimeField_mul_finset (φ : 𝓕.States) (φs : List 𝓕.S
|
|||
rw [ofFieldOpList, timeOrder_eq_ι_timeOrderF, timeOrderF_eq_maxTimeField_mul_finset]
|
||||
rfl
|
||||
|
||||
lemma timeOrder_superCommute_eq_time_mid {φ ψ : 𝓕.CrAnStates}
|
||||
(hφψ : crAnTimeOrderRel φ ψ) (hψφ : crAnTimeOrderRel ψ φ) (a b : 𝓕.FieldOpAlgebra) :
|
||||
𝓣(a * [ofCrAnFieldOp φ, ofCrAnFieldOp ψ]ₛ * b) =
|
||||
[ofCrAnFieldOp φ, ofCrAnFieldOp ψ]ₛ * 𝓣(a * b) := by
|
||||
rw [ofCrAnFieldOp, ofCrAnFieldOp]
|
||||
rw [superCommute_eq_ι_superCommuteF]
|
||||
obtain ⟨a, rfl⟩ := ι_surjective a
|
||||
obtain ⟨b, rfl⟩ := ι_surjective b
|
||||
rw [← map_mul, ← map_mul, timeOrder_eq_ι_timeOrderF]
|
||||
rw [ι_timeOrderF_superCommuteF_eq_time]
|
||||
rfl
|
||||
simp_all
|
||||
simp_all
|
||||
|
||||
lemma timeOrder_superCommute_eq_time_left {φ ψ : 𝓕.CrAnStates}
|
||||
(hφψ : crAnTimeOrderRel φ ψ) (hψφ : crAnTimeOrderRel ψ φ) (b : 𝓕.FieldOpAlgebra) :
|
||||
𝓣([ofCrAnFieldOp φ, ofCrAnFieldOp ψ]ₛ * b) =
|
||||
[ofCrAnFieldOp φ, ofCrAnFieldOp ψ]ₛ * 𝓣(b) := by
|
||||
trans 𝓣(1 * [ofCrAnFieldOp φ, ofCrAnFieldOp ψ]ₛ * b)
|
||||
simp
|
||||
rw [timeOrder_superCommute_eq_time_mid hφψ hψφ]
|
||||
simp
|
||||
|
||||
lemma timeOrder_superCommute_neq_time {φ ψ : 𝓕.CrAnStates}
|
||||
(hφψ : ¬ (crAnTimeOrderRel φ ψ ∧ crAnTimeOrderRel ψ φ)) :
|
||||
𝓣([ofCrAnFieldOp φ, ofCrAnFieldOp ψ]ₛ) = 0 := by
|
||||
rw [ofCrAnFieldOp, ofCrAnFieldOp]
|
||||
rw [superCommute_eq_ι_superCommuteF]
|
||||
rw [timeOrder_eq_ι_timeOrderF]
|
||||
trans ι (timeOrderF (1 * (superCommuteF (ofCrAnState φ)) (ofCrAnState ψ) * 1))
|
||||
simp
|
||||
rw [ι_timeOrderF_superCommuteF_neq_time ]
|
||||
exact hφψ
|
||||
|
||||
lemma timeOrder_superCommute_anPart_ofFieldOp_neq_time {φ ψ : 𝓕.States}
|
||||
(hφψ : ¬ (timeOrderRel φ ψ ∧ timeOrderRel ψ φ)) :
|
||||
𝓣([anPart φ,ofFieldOp ψ]ₛ) = 0 := by
|
||||
rw [ofFieldOp_eq_sum]
|
||||
simp
|
||||
apply Finset.sum_eq_zero
|
||||
intro a ha
|
||||
match φ with
|
||||
| .inAsymp φ =>
|
||||
simp
|
||||
| .position φ =>
|
||||
simp only [anPart_position, instCommGroup.eq_1]
|
||||
apply timeOrder_superCommute_neq_time
|
||||
simp_all [crAnTimeOrderRel]
|
||||
| .outAsymp φ =>
|
||||
simp only [anPart_posAsymp, instCommGroup.eq_1]
|
||||
apply timeOrder_superCommute_neq_time
|
||||
simp_all [crAnTimeOrderRel]
|
||||
|
||||
lemma timeOrder_timeOrder_mid (a b c : 𝓕.FieldOpAlgebra) :
|
||||
𝓣(a * b * c) = 𝓣(a * 𝓣(b) * c):= by
|
||||
obtain ⟨a, rfl⟩ := ι_surjective a
|
||||
obtain ⟨b, rfl⟩ := ι_surjective b
|
||||
obtain ⟨c, rfl⟩ := ι_surjective c
|
||||
rw [← map_mul, ← map_mul, timeOrder_eq_ι_timeOrderF, timeOrder_eq_ι_timeOrderF,
|
||||
← map_mul, ← map_mul, timeOrder_eq_ι_timeOrderF, timeOrderF_timeOrderF_mid]
|
||||
|
||||
lemma timeOrder_timeOrder_left (b c : 𝓕.FieldOpAlgebra) :
|
||||
𝓣(b * c) = 𝓣(𝓣(b) * c):= by
|
||||
trans 𝓣(1 * b * c)
|
||||
simp
|
||||
rw [timeOrder_timeOrder_mid]
|
||||
simp
|
||||
|
||||
lemma timeOrder_timeOrder_right (a b : 𝓕.FieldOpAlgebra) :
|
||||
𝓣(a * b) = 𝓣(a * 𝓣(b)) := by
|
||||
trans 𝓣(a * b * 1)
|
||||
simp
|
||||
rw [timeOrder_timeOrder_mid]
|
||||
simp
|
||||
|
||||
end FieldOpAlgebra
|
||||
end FieldSpecification
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue