feat: Wick's theorem for normal order
This commit is contained in:
parent
12d36dc1d9
commit
006e29fd08
11 changed files with 1055 additions and 2 deletions
|
@ -49,6 +49,22 @@ lemma card_zero_iff_empty (c : WickContraction n) : c.1.card = 0 ↔ c = empty :
|
|||
rw [Subtype.eq_iff]
|
||||
simp [empty]
|
||||
|
||||
lemma exists_pair_of_not_eq_empty (c : WickContraction n) (h : c ≠ empty) :
|
||||
∃ i j, {i, j} ∈ c.1 := by
|
||||
by_contra hn
|
||||
simp at hn
|
||||
have hc : c.1 = ∅ := by
|
||||
ext a
|
||||
simp
|
||||
by_contra hn'
|
||||
have hc := c.2.1 a hn'
|
||||
rw [@Finset.card_eq_two] at hc
|
||||
obtain ⟨x, y, hx, rfl⟩ := hc
|
||||
exact hn x y hn'
|
||||
apply h
|
||||
apply Subtype.eq
|
||||
simp [empty, hc]
|
||||
|
||||
/-- The equivalence between `WickContraction n` and `WickContraction m`
|
||||
derived from a propositional equality of `n` and `m`. -/
|
||||
def congr : {n m : ℕ} → (h : n = m) → WickContraction n ≃ WickContraction m
|
||||
|
|
|
@ -64,7 +64,6 @@ lemma join_congr {φs : List 𝓕.States} {φsΛ : WickContraction φs.length}
|
|||
rfl
|
||||
|
||||
|
||||
|
||||
def joinLiftLeft {φs : List 𝓕.States} {φsΛ : WickContraction φs.length}
|
||||
{φsucΛ : WickContraction [φsΛ]ᵘᶜ.length} : φsΛ.1 → (join φsΛ φsucΛ).1 :=
|
||||
fun a => ⟨a, by simp [join]⟩
|
||||
|
@ -169,6 +168,19 @@ lemma prod_join {φs : List 𝓕.States} (φsΛ : WickContraction φs.length)
|
|||
simp only [Fintype.prod_sum_type, Finset.univ_eq_attach]
|
||||
rfl
|
||||
|
||||
lemma joinLiftLeft_or_joinLiftRight_of_mem_join {φs : List 𝓕.States} (φsΛ : WickContraction φs.length)
|
||||
(φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) {a : Finset (Fin φs.length)} (ha : a ∈ (join φsΛ φsucΛ).1) :
|
||||
(∃ b, a = (joinLiftLeft (φsucΛ := φsucΛ) b).1) ∨ (∃ b, a = (joinLiftRight (φsucΛ := φsucΛ) b).1):= by
|
||||
simp [join] at ha
|
||||
rcases ha with ha | ⟨a, ha, rfl⟩
|
||||
· left
|
||||
use ⟨a, ha⟩
|
||||
rfl
|
||||
· right
|
||||
use ⟨a, ha⟩
|
||||
rfl
|
||||
|
||||
|
||||
@[simp]
|
||||
lemma join_fstFieldOfContract_joinLiftRight {φs : List 𝓕.States} (φsΛ : WickContraction φs.length)
|
||||
(φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) (a : φsucΛ.1) :
|
||||
|
@ -212,6 +224,25 @@ lemma join_sndFieldOfContract_joinLift {φs : List 𝓕.States} (φsΛ : WickCon
|
|||
· exact fstFieldOfContract_lt_sndFieldOfContract φsΛ a
|
||||
|
||||
|
||||
lemma mem_join_right_iff {φs : List 𝓕.States} (φsΛ : WickContraction φs.length)
|
||||
(φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) (a : Finset (Fin [φsΛ]ᵘᶜ.length)) :
|
||||
a ∈ φsucΛ.1 ↔ a.map uncontractedListEmd ∈ (join φsΛ φsucΛ).1 := by
|
||||
simp [join]
|
||||
have h1' : ¬ Finset.map uncontractedListEmd a ∈ φsΛ.1 :=
|
||||
uncontractedListEmd_finset_not_mem a
|
||||
simp [h1']
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
use a
|
||||
simp [h]
|
||||
rw [Finset.mapEmbedding_apply]
|
||||
· intro h
|
||||
obtain ⟨a, ha, h2⟩ := h
|
||||
rw [Finset.mapEmbedding_apply] at h2
|
||||
simp at h2
|
||||
subst h2
|
||||
exact ha
|
||||
|
||||
lemma join_card {φs : List 𝓕.States} {φsΛ : WickContraction φs.length}
|
||||
{φsucΛ : WickContraction [φsΛ]ᵘᶜ.length} :
|
||||
(join φsΛ φsucΛ).1.card = φsΛ.1.card + φsucΛ.1.card := by
|
||||
|
@ -277,6 +308,16 @@ lemma join_timeContract {φs : List 𝓕.States} (φsΛ : WickContraction φs.le
|
|||
funext a
|
||||
simp
|
||||
|
||||
lemma join_staticContract {φs : List 𝓕.States} (φsΛ : WickContraction φs.length)
|
||||
(φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) :
|
||||
(join φsΛ φsucΛ).staticContract = φsΛ.staticContract * φsucΛ.staticContract := by
|
||||
simp only [staticContract, List.get_eq_getElem]
|
||||
rw [prod_join]
|
||||
congr 1
|
||||
congr
|
||||
funext a
|
||||
simp
|
||||
|
||||
lemma mem_join_uncontracted_of_mem_right_uncontracted {φs : List 𝓕.States}
|
||||
(φsΛ : WickContraction φs.length)
|
||||
(φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) (i : Fin [φsΛ]ᵘᶜ.length)
|
||||
|
@ -975,4 +1016,25 @@ lemma join_sign {φs : List 𝓕.States} (φsΛ : WickContraction φs.length)
|
|||
(join φsΛ φsucΛ).sign = φsΛ.sign * φsucΛ.sign := by
|
||||
exact join_sign_induction φsΛ φsucΛ hc (φsΛ).1.card rfl
|
||||
|
||||
lemma join_not_gradingCompliant_of_left_not_gradingCompliant {φs : List 𝓕.States}
|
||||
(φsΛ : WickContraction φs.length) (φsucΛ : WickContraction [φsΛ]ᵘᶜ.length)
|
||||
(hc : ¬ φsΛ.GradingCompliant) : ¬ (join φsΛ φsucΛ).GradingCompliant := by
|
||||
simp_all [GradingCompliant]
|
||||
obtain ⟨a, ha, ha2⟩ := hc
|
||||
use (joinLiftLeft (φsucΛ := φsucΛ) ⟨a, ha⟩).1
|
||||
use (joinLiftLeft (φsucΛ := φsucΛ) ⟨a, ha⟩).2
|
||||
simp
|
||||
exact ha2
|
||||
|
||||
lemma join_sign_timeContract {φs : List 𝓕.States} (φsΛ : WickContraction φs.length)
|
||||
(φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) :
|
||||
(join φsΛ φsucΛ).sign • (join φsΛ φsucΛ).timeContract.1 =
|
||||
(φsΛ.sign • φsΛ.timeContract.1) * (φsucΛ.sign • φsucΛ.timeContract.1) := by
|
||||
rw [join_timeContract]
|
||||
by_cases h : φsΛ.GradingCompliant
|
||||
· rw [join_sign _ _ h]
|
||||
simp [smul_smul, mul_comm]
|
||||
· rw [timeContract_of_not_gradingCompliant _ _ h]
|
||||
simp
|
||||
|
||||
end WickContraction
|
||||
|
|
|
@ -122,4 +122,16 @@ lemma subContraction_singleton_eq_singleton {φs : List 𝓕.States}
|
|||
simp [subContraction, singleton]
|
||||
exact finset_eq_fstFieldOfContract_sndFieldOfContract φsΛ a
|
||||
|
||||
lemma singleton_timeContract {φs : List 𝓕.States} {i j : Fin φs.length} (hij : i < j) :
|
||||
(singleton hij).timeContract =
|
||||
⟨FieldOpAlgebra.timeContract φs[i] φs[j], timeContract_mem_center _ _⟩ := by
|
||||
rw [timeContract, singleton_prod]
|
||||
simp
|
||||
|
||||
lemma singleton_staticContract {φs : List 𝓕.States} {i j : Fin φs.length} (hij : i < j) :
|
||||
(singleton hij).staticContract.1 =
|
||||
[anPart φs[i], ofFieldOp φs[j]]ₛ := by
|
||||
rw [staticContract, singleton_prod]
|
||||
simp
|
||||
|
||||
end WickContraction
|
||||
|
|
|
@ -98,6 +98,43 @@ lemma subContraction_uncontractedList_get {S : Finset (Finset (Fin φs.length))}
|
|||
erw [← getElem_uncontractedListEmd]
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma subContraction_fstFieldOfContract {S : Finset (Finset (Fin φs.length))} {hs : S ⊆ φsΛ.1}
|
||||
(a : (subContraction S hs).1) :
|
||||
(subContraction S hs).fstFieldOfContract a =
|
||||
φsΛ.fstFieldOfContract ⟨a.1, mem_of_mem_subContraction a.2⟩:= by
|
||||
apply eq_fstFieldOfContract_of_mem _ _ _ (φsΛ.sndFieldOfContract ⟨a.1, mem_of_mem_subContraction a.2⟩)
|
||||
· have ha := finset_eq_fstFieldOfContract_sndFieldOfContract _ ⟨a.1, mem_of_mem_subContraction a.2⟩
|
||||
simp at ha
|
||||
conv_lhs =>
|
||||
rw [ha]
|
||||
simp
|
||||
· have ha := finset_eq_fstFieldOfContract_sndFieldOfContract _ ⟨a.1, mem_of_mem_subContraction a.2⟩
|
||||
simp at ha
|
||||
conv_lhs =>
|
||||
rw [ha]
|
||||
simp
|
||||
· exact fstFieldOfContract_lt_sndFieldOfContract φsΛ ⟨↑a, mem_of_mem_subContraction a.property⟩
|
||||
|
||||
@[simp]
|
||||
lemma subContraction_sndFieldOfContract {S : Finset (Finset (Fin φs.length))} {hs : S ⊆ φsΛ.1}
|
||||
(a : (subContraction S hs).1) :
|
||||
(subContraction S hs).sndFieldOfContract a =
|
||||
φsΛ.sndFieldOfContract ⟨a.1, mem_of_mem_subContraction a.2⟩:= by
|
||||
apply eq_sndFieldOfContract_of_mem _ _ (φsΛ.fstFieldOfContract ⟨a.1, mem_of_mem_subContraction a.2⟩)
|
||||
· have ha := finset_eq_fstFieldOfContract_sndFieldOfContract _ ⟨a.1, mem_of_mem_subContraction a.2⟩
|
||||
simp at ha
|
||||
conv_lhs =>
|
||||
rw [ha]
|
||||
simp
|
||||
· have ha := finset_eq_fstFieldOfContract_sndFieldOfContract _ ⟨a.1, mem_of_mem_subContraction a.2⟩
|
||||
simp at ha
|
||||
conv_lhs =>
|
||||
rw [ha]
|
||||
simp
|
||||
· exact fstFieldOfContract_lt_sndFieldOfContract φsΛ ⟨↑a, mem_of_mem_subContraction a.property⟩
|
||||
|
||||
|
||||
@[simp]
|
||||
lemma quotContraction_fstFieldOfContract_uncontractedListEmd {S : Finset (Finset (Fin φs.length))}
|
||||
{hs : S ⊆ φsΛ.1} (a : (quotContraction S hs).1) :
|
||||
|
@ -133,5 +170,18 @@ lemma quotContraction_gradingCompliant {S : Finset (Finset (Fin φs.length))} {h
|
|||
simp
|
||||
apply hsΛ
|
||||
|
||||
lemma mem_quotContraction_iff {S : Finset (Finset (Fin φs.length))} {hs : S ⊆ φsΛ.1}
|
||||
{a : Finset (Fin [φsΛ.subContraction S hs]ᵘᶜ.length)} :
|
||||
a ∈ (quotContraction S hs).1 ↔ a.map uncontractedListEmd ∈ φsΛ.1
|
||||
∧ a.map uncontractedListEmd ∉ (subContraction S hs).1 := by
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
apply And.intro
|
||||
· exact mem_of_mem_quotContraction h
|
||||
· exact uncontractedListEmd_finset_not_mem _
|
||||
· intro h
|
||||
have h2 := mem_subContraction_or_quotContraction (S := S) (hs := hs) h.1
|
||||
simp_all
|
||||
|
||||
|
||||
end WickContraction
|
||||
|
|
|
@ -70,6 +70,12 @@ lemma timeConract_insertAndContract_some
|
|||
ext a
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma timeContract_empty (φs : List 𝓕.States) :
|
||||
(@empty φs.length).timeContract = 1 := by
|
||||
rw [timeContract, empty]
|
||||
simp
|
||||
|
||||
open FieldStatistic
|
||||
|
||||
lemma timeConract_insertAndContract_some_eq_mul_contractStateAtIndex_lt
|
||||
|
|
523
HepLean/PerturbationTheory/WickContraction/TimeSet.lean
Normal file
523
HepLean/PerturbationTheory/WickContraction/TimeSet.lean
Normal file
|
@ -0,0 +1,523 @@
|
|||
/-
|
||||
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.WickContraction.TimeContract
|
||||
import HepLean.PerturbationTheory.WickContraction.Join
|
||||
import HepLean.PerturbationTheory.Algebras.FieldOpAlgebra.TimeContraction
|
||||
/-!
|
||||
|
||||
# Time contractions
|
||||
|
||||
-/
|
||||
|
||||
open FieldSpecification
|
||||
variable {𝓕 : FieldSpecification}
|
||||
|
||||
namespace WickContraction
|
||||
variable {n : ℕ} (c : WickContraction n)
|
||||
open HepLean.List
|
||||
open FieldOpAlgebra
|
||||
|
||||
def EqTimeOnlyCond {φs : List 𝓕.States} (φsΛ : WickContraction φs.length) : Prop :=
|
||||
∀ (i j), {i, j} ∈ φsΛ.1 → timeOrderRel φs[i] φs[j]
|
||||
noncomputable section
|
||||
|
||||
noncomputable instance {φs : List 𝓕.States} (φsΛ : WickContraction φs.length) :
|
||||
Decidable (EqTimeOnlyCond φsΛ) :=
|
||||
inferInstanceAs (Decidable (∀ (i j), {i, j} ∈ φsΛ.1 → timeOrderRel φs[i] φs[j]))
|
||||
|
||||
noncomputable def EqTimeOnly (φs : List 𝓕.States) :
|
||||
Finset (WickContraction φs.length) := {φsΛ | EqTimeOnlyCond φsΛ}
|
||||
|
||||
|
||||
namespace EqTimeOnly
|
||||
variable {φs : List 𝓕.States} (φsΛ : EqTimeOnly φs)
|
||||
|
||||
lemma timeOrderRel_of_mem {i j : Fin φs.length} (h : {i, j} ∈ φsΛ.1.1) :
|
||||
timeOrderRel φs[i] φs[j] := by
|
||||
have h' := φsΛ.2
|
||||
simp only [EqTimeOnly, EqTimeOnlyCond, ne_eq, Fin.getElem_fin, Finset.mem_filter, Finset.mem_univ,
|
||||
true_and] at h'
|
||||
exact h' i j h
|
||||
|
||||
lemma timeOrderRel_both_of_mem {i j : Fin φs.length} (h : {i, j} ∈ φsΛ.1.1) :
|
||||
timeOrderRel φs[i] φs[j] ∧ timeOrderRel φs[j] φs[i] := by
|
||||
apply And.intro
|
||||
· exact timeOrderRel_of_mem φsΛ h
|
||||
· apply timeOrderRel_of_mem φsΛ
|
||||
rw [@Finset.pair_comm]
|
||||
exact h
|
||||
|
||||
lemma mem_iff_forall_finset {φs : List 𝓕.States} (φsΛ : WickContraction φs.length) :
|
||||
φsΛ ∈ EqTimeOnly φs ↔ ∀ (a : φsΛ.1),
|
||||
timeOrderRel (φs[φsΛ.fstFieldOfContract a]) (φs[φsΛ.sndFieldOfContract a])
|
||||
∧ timeOrderRel (φs[φsΛ.sndFieldOfContract a]) (φs[φsΛ.fstFieldOfContract a]) := by
|
||||
apply Iff.intro
|
||||
· intro h a
|
||||
apply timeOrderRel_both_of_mem ⟨φsΛ, h⟩
|
||||
simp
|
||||
rw [← finset_eq_fstFieldOfContract_sndFieldOfContract]
|
||||
simp
|
||||
· intro h
|
||||
simp [EqTimeOnly, EqTimeOnlyCond]
|
||||
intro i j h1
|
||||
have h' := h ⟨{i, j}, h1⟩
|
||||
by_cases hij: i < j
|
||||
· have hi : φsΛ.fstFieldOfContract ⟨{i, j}, h1⟩ = i := by
|
||||
apply eq_fstFieldOfContract_of_mem _ _ i j
|
||||
· simp
|
||||
· simp
|
||||
· exact hij
|
||||
have hj : φsΛ.sndFieldOfContract ⟨{i, j}, h1⟩ = j := by
|
||||
apply eq_sndFieldOfContract_of_mem _ _ i j
|
||||
· simp
|
||||
· simp
|
||||
· exact hij
|
||||
simp_all
|
||||
· have hij : i ≠ j := by
|
||||
by_contra hij
|
||||
subst hij
|
||||
have h2 := φsΛ.2.1 {i, i} h1
|
||||
simp at h2
|
||||
have hj : φsΛ.fstFieldOfContract ⟨{i, j}, h1⟩ = j := by
|
||||
apply eq_fstFieldOfContract_of_mem _ _ j i
|
||||
· simp
|
||||
· simp
|
||||
· omega
|
||||
have hi : φsΛ.sndFieldOfContract ⟨{i, j}, h1⟩ = i := by
|
||||
apply eq_sndFieldOfContract_of_mem _ _ j i
|
||||
· simp
|
||||
· simp
|
||||
· omega
|
||||
simp_all
|
||||
|
||||
@[simp]
|
||||
lemma empty_mem {φs : List 𝓕.States} : empty ∈ EqTimeOnly φs := by
|
||||
rw [mem_iff_forall_finset]
|
||||
simp [empty]
|
||||
|
||||
lemma staticContract_eq_timeContract : φsΛ.1.staticContract = φsΛ.1.timeContract := by
|
||||
simp only [staticContract, timeContract]
|
||||
apply congrArg
|
||||
funext a
|
||||
ext
|
||||
simp only [List.get_eq_getElem]
|
||||
rw [timeContract_of_timeOrderRel]
|
||||
apply timeOrderRel_of_mem φsΛ
|
||||
rw [← finset_eq_fstFieldOfContract_sndFieldOfContract]
|
||||
exact a.2
|
||||
|
||||
lemma mem_congr {φs φs' : List 𝓕.States} (h : φs = φs') (φsΛ : WickContraction φs.length):
|
||||
congr (by simp [h]) φsΛ ∈ EqTimeOnly φs' ↔ φsΛ ∈ EqTimeOnly φs := by
|
||||
subst h
|
||||
simp
|
||||
|
||||
lemma quotContraction_mem {φs : List 𝓕.States} {φsΛ : WickContraction φs.length}
|
||||
(h : φsΛ ∈ EqTimeOnly φs) (S : Finset (Finset (Fin φs.length))) (ha : S ⊆ φsΛ.1) :
|
||||
φsΛ.quotContraction S ha ∈ EqTimeOnly [φsΛ.subContraction S ha]ᵘᶜ := by
|
||||
rw [mem_iff_forall_finset]
|
||||
intro a
|
||||
simp
|
||||
erw [subContraction_uncontractedList_get]
|
||||
erw [subContraction_uncontractedList_get]
|
||||
simp
|
||||
rw [mem_iff_forall_finset] at h
|
||||
apply h
|
||||
|
||||
lemma exists_join_singleton_of_card_ge_zero {φs : List 𝓕.States} (φsΛ : WickContraction φs.length)
|
||||
(h : 0 < φsΛ.1.card) (h1 : φsΛ ∈ EqTimeOnly φs) :
|
||||
∃ (i j : Fin φs.length) (h : i < j) (φsucΛ : WickContraction [singleton h]ᵘᶜ.length),
|
||||
φsΛ = join (singleton h) φsucΛ ∧ (timeOrderRel φs[i] φs[j] ∧ timeOrderRel φs[j] φs[i])
|
||||
∧ φsucΛ ∈ EqTimeOnly [singleton h]ᵘᶜ ∧ φsucΛ.1.card + 1 = φsΛ.1.card := by
|
||||
obtain ⟨a, ha⟩ := exists_contraction_pair_of_card_ge_zero φsΛ h
|
||||
use φsΛ.fstFieldOfContract ⟨a, ha⟩
|
||||
use φsΛ.sndFieldOfContract ⟨a, ha⟩
|
||||
use φsΛ.fstFieldOfContract_lt_sndFieldOfContract ⟨a, ha⟩
|
||||
let φsucΛ :
|
||||
WickContraction [singleton (φsΛ.fstFieldOfContract_lt_sndFieldOfContract ⟨a, ha⟩)]ᵘᶜ.length :=
|
||||
congr (by simp [← subContraction_singleton_eq_singleton]) (φsΛ.quotContraction {a} (by simpa using ha))
|
||||
use φsucΛ
|
||||
simp [← subContraction_singleton_eq_singleton]
|
||||
apply And.intro
|
||||
· have h1 := join_congr (subContraction_singleton_eq_singleton _ ⟨a, ha⟩).symm (φsucΛ := φsucΛ)
|
||||
simp [h1, φsucΛ]
|
||||
rw [join_sub_quot]
|
||||
· apply And.intro
|
||||
· apply timeOrderRel_both_of_mem ⟨φsΛ, h1⟩
|
||||
simp
|
||||
rw [← finset_eq_fstFieldOfContract_sndFieldOfContract]
|
||||
simp [ha]
|
||||
apply And.intro
|
||||
· simp [φsucΛ]
|
||||
rw [mem_congr (φs := [(φsΛ.subContraction {a} (by simpa using ha))]ᵘᶜ)]
|
||||
simp
|
||||
exact quotContraction_mem h1 _ _
|
||||
rw [← subContraction_singleton_eq_singleton]
|
||||
· simp [φsucΛ]
|
||||
have h1 := subContraction_card_plus_quotContraction_card_eq _ {a} (by simpa using ha)
|
||||
simp [subContraction] at h1
|
||||
omega
|
||||
|
||||
lemma timeOrder_timeContract_mul_of_mem_mid_induction {φs : List 𝓕.States} (φsΛ : WickContraction φs.length)
|
||||
(hl : φsΛ ∈ EqTimeOnly φs) (a b: 𝓕.FieldOpAlgebra) : (n : ℕ) → (hn : φsΛ.1.card = n) →
|
||||
𝓣(a * φsΛ.timeContract.1 * b) = φsΛ.timeContract.1 * 𝓣(a * b)
|
||||
| 0, hn => by
|
||||
rw [@card_zero_iff_empty] at hn
|
||||
subst hn
|
||||
simp
|
||||
| Nat.succ n, hn => by
|
||||
obtain ⟨i, j, hij, φsucΛ, rfl, h2, h3, h4⟩ := exists_join_singleton_of_card_ge_zero φsΛ (by simp [hn]) hl
|
||||
rw [join_timeContract]
|
||||
rw [singleton_timeContract]
|
||||
simp
|
||||
trans timeOrder (a * FieldOpAlgebra.timeContract φs[↑i] φs[↑j] * (φsucΛ.timeContract.1 * b))
|
||||
simp [mul_assoc]
|
||||
rw [timeOrder_timeContract_eq_time_mid]
|
||||
have ih := timeOrder_timeContract_mul_of_mem_mid_induction φsucΛ h3 a b n (by omega)
|
||||
rw [← mul_assoc, ih]
|
||||
simp [mul_assoc]
|
||||
simp_all
|
||||
simp_all
|
||||
|
||||
lemma timeOrder_timeContract_mul_of_mem_mid {φs : List 𝓕.States} (φsΛ : WickContraction φs.length)
|
||||
(hl : φsΛ ∈ EqTimeOnly φs) (a b : 𝓕.FieldOpAlgebra) :
|
||||
𝓣(a * φsΛ.timeContract.1 * b) = φsΛ.timeContract.1 * 𝓣(a * b) := by
|
||||
exact timeOrder_timeContract_mul_of_mem_mid_induction φsΛ hl a b φsΛ.1.card rfl
|
||||
|
||||
lemma timeOrder_timeContract_mul_of_mem_left {φs : List 𝓕.States} (φsΛ : WickContraction φs.length)
|
||||
(hl : φsΛ ∈ EqTimeOnly φs) ( b : 𝓕.FieldOpAlgebra) :
|
||||
𝓣( φsΛ.timeContract.1 * b) = φsΛ.timeContract.1 * 𝓣( b) := by
|
||||
trans 𝓣(1 * φsΛ.timeContract.1 * b)
|
||||
simp
|
||||
rw [timeOrder_timeContract_mul_of_mem_mid φsΛ hl]
|
||||
simp
|
||||
|
||||
lemma exists_join_singleton_of_ne_mem {φs : List 𝓕.States} (φsΛ : WickContraction φs.length)
|
||||
(h1 : ¬ φsΛ ∈ EqTimeOnly φs) :
|
||||
∃ (i j : Fin φs.length) (h : i < j) (φsucΛ : WickContraction [singleton h]ᵘᶜ.length),
|
||||
φsΛ = join (singleton h) φsucΛ ∧ (¬ timeOrderRel φs[i] φs[j] ∨ ¬ timeOrderRel φs[j] φs[i]) := by
|
||||
rw [mem_iff_forall_finset] at h1
|
||||
simp at h1
|
||||
obtain ⟨a, ha, hr⟩ := h1
|
||||
use φsΛ.fstFieldOfContract ⟨a, ha⟩
|
||||
use φsΛ.sndFieldOfContract ⟨a, ha⟩
|
||||
use φsΛ.fstFieldOfContract_lt_sndFieldOfContract ⟨a, ha⟩
|
||||
let φsucΛ :
|
||||
WickContraction [singleton (φsΛ.fstFieldOfContract_lt_sndFieldOfContract ⟨a, ha⟩)]ᵘᶜ.length :=
|
||||
congr (by simp [← subContraction_singleton_eq_singleton]) (φsΛ.quotContraction {a} (by simpa using ha))
|
||||
use φsucΛ
|
||||
simp [← subContraction_singleton_eq_singleton]
|
||||
apply And.intro
|
||||
· have h1 := join_congr (subContraction_singleton_eq_singleton _ ⟨a, ha⟩).symm (φsucΛ := φsucΛ)
|
||||
simp [h1, φsucΛ]
|
||||
rw [join_sub_quot]
|
||||
· by_cases h1 : timeOrderRel φs[↑(φsΛ.fstFieldOfContract ⟨a, ha⟩)]
|
||||
φs[↑(φsΛ.sndFieldOfContract ⟨a, ha⟩)]
|
||||
· simp_all [h1]
|
||||
· simp_all [h1]
|
||||
|
||||
lemma timeOrder_timeContract_of_not_mem {φs : List 𝓕.States} (φsΛ : WickContraction φs.length)
|
||||
(hl : ¬ φsΛ ∈ EqTimeOnly φs) : 𝓣(φsΛ.timeContract.1) = 0 := by
|
||||
obtain ⟨i, j, hij, φsucΛ, rfl, hr⟩ := exists_join_singleton_of_ne_mem φsΛ hl
|
||||
rw [join_timeContract]
|
||||
rw [singleton_timeContract]
|
||||
simp
|
||||
rw [timeOrder_timeOrder_left]
|
||||
rw [timeOrder_timeContract_neq_time]
|
||||
simp
|
||||
simp_all
|
||||
intro h
|
||||
simp_all
|
||||
|
||||
lemma timeOrder_staticContract_of_not_mem {φs : List 𝓕.States} (φsΛ : WickContraction φs.length)
|
||||
(hl : ¬ φsΛ ∈ EqTimeOnly φs) : 𝓣(φsΛ.staticContract.1) = 0 := by
|
||||
obtain ⟨i, j, hij, φsucΛ, rfl, hr⟩ := exists_join_singleton_of_ne_mem φsΛ hl
|
||||
rw [join_staticContract]
|
||||
simp
|
||||
rw [singleton_staticContract]
|
||||
rw [timeOrder_timeOrder_left]
|
||||
rw [timeOrder_superCommute_anPart_ofFieldOp_neq_time]
|
||||
simp
|
||||
intro h
|
||||
simp_all
|
||||
|
||||
end EqTimeOnly
|
||||
|
||||
|
||||
def HaveEqTime {φs : List 𝓕.States} (φsΛ : WickContraction φs.length) : Prop :=
|
||||
∃ (i j : Fin φs.length) (h : {i, j} ∈ φsΛ.1),
|
||||
timeOrderRel φs[i] φs[j] ∧ timeOrderRel φs[j] φs[i]
|
||||
|
||||
|
||||
noncomputable instance {φs : List 𝓕.States} (φsΛ : WickContraction φs.length) :
|
||||
Decidable (HaveEqTime φsΛ) :=
|
||||
inferInstanceAs (Decidable (∃ (i j : Fin φs.length) (h : ({i, j} : Finset (Fin φs.length)) ∈ φsΛ.1),
|
||||
timeOrderRel φs[i] φs[j] ∧ timeOrderRel φs[j] φs[i]))
|
||||
|
||||
lemma haveEqTime_iff_finset {φs : List 𝓕.States} (φsΛ : WickContraction φs.length) :
|
||||
HaveEqTime φsΛ ↔ ∃ (a : Finset (Fin φs.length)) (h : a ∈ φsΛ.1), timeOrderRel φs[φsΛ.fstFieldOfContract ⟨a, h⟩] φs[φsΛ.sndFieldOfContract ⟨a, h⟩]
|
||||
∧ timeOrderRel φs[φsΛ.sndFieldOfContract ⟨a, h⟩] φs[φsΛ.fstFieldOfContract ⟨a, h⟩] := by
|
||||
simp [HaveEqTime]
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
obtain ⟨i, j, hij, h1, h2⟩ := h
|
||||
use {i, j}, h1
|
||||
by_cases hij : i < j
|
||||
· have h1n := eq_fstFieldOfContract_of_mem φsΛ ⟨{i,j}, h1⟩ i j (by simp) (by simp) hij
|
||||
have h2n := eq_sndFieldOfContract_of_mem φsΛ ⟨{i,j}, h1⟩ i j (by simp) (by simp) hij
|
||||
simp [h1n, h2n]
|
||||
simp_all only [forall_true_left, true_and]
|
||||
· have hineqj : i ≠ j := by
|
||||
by_contra hineqj
|
||||
subst hineqj
|
||||
have h2 := φsΛ.2.1 {i, i} h1
|
||||
simp_all
|
||||
have hji : j < i := by omega
|
||||
have h1n := eq_fstFieldOfContract_of_mem φsΛ ⟨{i,j}, h1⟩ j i (by simp) (by simp) hji
|
||||
have h2n := eq_sndFieldOfContract_of_mem φsΛ ⟨{i,j}, h1⟩ j i (by simp) (by simp) hji
|
||||
simp [h1n, h2n]
|
||||
simp_all
|
||||
· intro h
|
||||
obtain ⟨a, h1, h2, h3⟩ := h
|
||||
use φsΛ.fstFieldOfContract ⟨a, h1⟩
|
||||
use φsΛ.sndFieldOfContract ⟨a, h1⟩
|
||||
simp_all
|
||||
rw [← finset_eq_fstFieldOfContract_sndFieldOfContract]
|
||||
exact h1
|
||||
|
||||
@[simp]
|
||||
lemma empty_not_haveEqTime {φs : List 𝓕.States} : ¬ HaveEqTime (empty : WickContraction φs.length) := by
|
||||
rw [haveEqTime_iff_finset]
|
||||
simp [empty]
|
||||
|
||||
def eqTimeContractSet {φs : List 𝓕.States} (φsΛ : WickContraction φs.length) :
|
||||
Finset (Finset (Fin φs.length)) :=
|
||||
Finset.univ.filter (fun a =>
|
||||
a ∈ φsΛ.1 ∧ ∀ (h : a ∈ φsΛ.1),
|
||||
timeOrderRel φs[φsΛ.fstFieldOfContract ⟨a, h⟩] φs[φsΛ.sndFieldOfContract ⟨a, h⟩]
|
||||
∧ timeOrderRel φs[φsΛ.sndFieldOfContract ⟨a, h⟩] φs[φsΛ.fstFieldOfContract ⟨a, h⟩])
|
||||
|
||||
lemma eqTimeContractSet_subset {φs : List 𝓕.States} (φsΛ : WickContraction φs.length) :
|
||||
eqTimeContractSet φsΛ ⊆ φsΛ.1 := by
|
||||
simp [eqTimeContractSet]
|
||||
intro a
|
||||
simp
|
||||
intro h _
|
||||
exact h
|
||||
|
||||
lemma mem_of_mem_eqTimeContractSet{φs : List 𝓕.States} {φsΛ : WickContraction φs.length}
|
||||
{a : Finset (Fin φs.length)} (h : a ∈ eqTimeContractSet φsΛ) : a ∈ φsΛ.1 := by
|
||||
simp [eqTimeContractSet] at h
|
||||
exact h.1
|
||||
|
||||
lemma join_eqTimeContractSet {φs : List 𝓕.States} (φsΛ : WickContraction φs.length)
|
||||
(φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) :
|
||||
eqTimeContractSet (join φsΛ φsucΛ) = φsΛ.eqTimeContractSet ∪
|
||||
φsucΛ.eqTimeContractSet.map (Finset.mapEmbedding uncontractedListEmd).toEmbedding := by
|
||||
ext a
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
have hmem := mem_of_mem_eqTimeContractSet h
|
||||
have ht := joinLiftLeft_or_joinLiftRight_of_mem_join (φsucΛ := φsucΛ) _ hmem
|
||||
rcases ht with ht | ht
|
||||
· obtain ⟨b, rfl⟩ := ht
|
||||
simp
|
||||
left
|
||||
simp [eqTimeContractSet]
|
||||
apply And.intro (by simp [joinLiftLeft])
|
||||
intro h'
|
||||
simp [eqTimeContractSet] at h
|
||||
exact h
|
||||
· obtain ⟨b, rfl⟩ := ht
|
||||
simp
|
||||
right
|
||||
use b
|
||||
rw [Finset.mapEmbedding_apply]
|
||||
simp [joinLiftRight]
|
||||
simpa [eqTimeContractSet] using h
|
||||
· intro h
|
||||
simp at h
|
||||
rcases h with h | h
|
||||
· simp [eqTimeContractSet]
|
||||
simp [eqTimeContractSet] at h
|
||||
apply And.intro
|
||||
· simp [join, h.1]
|
||||
· intro h'
|
||||
have h2 := h.2 h.1
|
||||
exact h2
|
||||
· simp [eqTimeContractSet]
|
||||
simp [eqTimeContractSet] at h
|
||||
obtain ⟨b, h1, h2, rfl⟩ := h
|
||||
apply And.intro
|
||||
· simp [join, h1]
|
||||
· intro h'
|
||||
have h2 := h1.2 h1.1
|
||||
have hj : ⟨(Finset.mapEmbedding uncontractedListEmd) b, h'⟩ = joinLiftRight ⟨b, h1.1⟩ := by rfl
|
||||
simp [hj]
|
||||
simpa using h2
|
||||
|
||||
|
||||
lemma eqTimeContractSet_of_not_haveEqTime {φs : List 𝓕.States} {φsΛ : WickContraction φs.length}
|
||||
(h : ¬ HaveEqTime φsΛ) : eqTimeContractSet φsΛ = ∅ := by
|
||||
ext a
|
||||
simp
|
||||
by_contra hn
|
||||
rw [haveEqTime_iff_finset] at h
|
||||
simp at h
|
||||
simp [eqTimeContractSet] at hn
|
||||
have h2 := hn.2 hn.1
|
||||
have h3 := h a hn.1
|
||||
simp_all
|
||||
|
||||
lemma eqTimeContractSet_of_mem_eqTimeOnly {φs : List 𝓕.States} {φsΛ : WickContraction φs.length}
|
||||
(h : φsΛ ∈ EqTimeOnly φs) : eqTimeContractSet φsΛ = φsΛ.1 := by
|
||||
ext a
|
||||
simp [eqTimeContractSet]
|
||||
rw [@EqTimeOnly.mem_iff_forall_finset] at h
|
||||
exact fun h_1 => h ⟨a, h_1⟩
|
||||
|
||||
lemma subContraction_eqTimeContractSet_eqTimeOnly {φs : List 𝓕.States} (φsΛ : WickContraction φs.length) :
|
||||
φsΛ.subContraction (eqTimeContractSet φsΛ) (eqTimeContractSet_subset φsΛ) ∈
|
||||
EqTimeOnly φs := by
|
||||
rw [EqTimeOnly.mem_iff_forall_finset]
|
||||
intro a
|
||||
have ha2 := a.2
|
||||
simp [subContraction, -Finset.coe_mem, eqTimeContractSet] at ha2
|
||||
simp
|
||||
exact ha2.2 ha2.1
|
||||
|
||||
lemma pair_mem_eqTimeContractSet_iff {φs : List 𝓕.States} {i j : Fin φs.length} (φsΛ : WickContraction φs.length) (h : {i, j} ∈ φsΛ.1) :
|
||||
{i, j} ∈ φsΛ.eqTimeContractSet ↔ timeOrderRel φs[i] φs[j] ∧ timeOrderRel φs[j] φs[i] := by
|
||||
simp [eqTimeContractSet]
|
||||
by_cases hij : i < j
|
||||
· have h1 := eq_fstFieldOfContract_of_mem φsΛ ⟨{i,j}, h⟩ i j (by simp) (by simp) hij
|
||||
have h2 := eq_sndFieldOfContract_of_mem φsΛ ⟨{i,j}, h⟩ i j (by simp) (by simp) hij
|
||||
simp [h1, h2]
|
||||
simp_all only [forall_true_left, true_and]
|
||||
· have hineqj : i ≠ j := by
|
||||
by_contra hineqj
|
||||
subst hineqj
|
||||
have h2 := φsΛ.2.1 {i, i} h
|
||||
simp_all
|
||||
have hji : j < i := by omega
|
||||
have h1 := eq_fstFieldOfContract_of_mem φsΛ ⟨{i,j}, h⟩ j i (by simp) (by simp) hji
|
||||
have h2 := eq_sndFieldOfContract_of_mem φsΛ ⟨{i,j}, h⟩ j i (by simp) (by simp) hji
|
||||
simp [h1, h2]
|
||||
simp_all only [not_lt, ne_eq, forall_true_left, true_and]
|
||||
apply Iff.intro
|
||||
· intro a
|
||||
simp_all only [and_self]
|
||||
· intro a
|
||||
simp_all only [and_self]
|
||||
|
||||
lemma subContraction_eqTimeContractSet_not_empty_of_haveEqTime
|
||||
{φs : List 𝓕.States} (φsΛ : WickContraction φs.length) (h : HaveEqTime φsΛ) :
|
||||
φsΛ.subContraction (eqTimeContractSet φsΛ) (eqTimeContractSet_subset φsΛ) ≠ empty := by
|
||||
simp
|
||||
erw [Subtype.eq_iff]
|
||||
simp [empty, subContraction]
|
||||
rw [@Finset.eq_empty_iff_forall_not_mem]
|
||||
simp [HaveEqTime] at h
|
||||
obtain ⟨i, j, hij, h1, h2⟩ := h
|
||||
simp
|
||||
use {i, j}
|
||||
rw [pair_mem_eqTimeContractSet_iff]
|
||||
simp_all
|
||||
exact h1
|
||||
|
||||
lemma quotContraction_eqTimeContractSet_not_haveEqTime {φs : List 𝓕.States} (φsΛ : WickContraction φs.length) :
|
||||
¬ HaveEqTime (φsΛ.quotContraction (eqTimeContractSet φsΛ) (eqTimeContractSet_subset φsΛ)) := by
|
||||
rw [haveEqTime_iff_finset]
|
||||
simp
|
||||
intro a ha
|
||||
erw [subContraction_uncontractedList_get]
|
||||
erw [subContraction_uncontractedList_get]
|
||||
simp
|
||||
simp [quotContraction] at ha
|
||||
have hn' : Finset.map uncontractedListEmd a ∉
|
||||
(φsΛ.subContraction (eqTimeContractSet φsΛ) (eqTimeContractSet_subset φsΛ) ).1 := by
|
||||
exact uncontractedListEmd_finset_not_mem a
|
||||
simp [subContraction, eqTimeContractSet] at hn'
|
||||
have hn'' := hn' ha
|
||||
obtain ⟨h, h1⟩ := hn''
|
||||
simp_all
|
||||
|
||||
lemma join_haveEqTime_of_eqTimeOnly_nonEmpty {φs : List 𝓕.States} (φsΛ : WickContraction φs.length)
|
||||
(h1 : φsΛ ∈ EqTimeOnly φs) (h2 : φsΛ ≠ empty)
|
||||
(φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) :
|
||||
HaveEqTime (join φsΛ φsucΛ) := by
|
||||
simp [join, HaveEqTime]
|
||||
simp [EqTimeOnly, EqTimeOnlyCond] at h1
|
||||
obtain ⟨i, j, h⟩ := exists_pair_of_not_eq_empty _ h2
|
||||
use i, j
|
||||
have h1 := h1 i j h
|
||||
simp_all
|
||||
apply h1 j i
|
||||
rw [Finset.pair_comm]
|
||||
exact h
|
||||
|
||||
lemma hasEqTimeEquiv_ext_sigma {φs : List 𝓕.States} {x1 x2 : Σ (φsΛ : {φsΛ : WickContraction φs.length // φsΛ ∈ EqTimeOnly φs ∧ φsΛ ≠ empty}),
|
||||
{φssucΛ : WickContraction [φsΛ.1]ᵘᶜ.length // ¬ HaveEqTime φssucΛ}}
|
||||
(h1 : x1.1.1 = x2.1.1) (h2 : x1.2.1 = congr (by simp [h1]) x2.2.1) : x1 = x2 := by
|
||||
match x1, x2 with
|
||||
| ⟨⟨a1, b1⟩, ⟨c1, d1⟩⟩, ⟨⟨a2, b2⟩, ⟨c2, d2⟩⟩ =>
|
||||
simp at h1
|
||||
subst h1
|
||||
simp at h2
|
||||
simp [h2]
|
||||
|
||||
def hasEqTimeEquiv (φs : List 𝓕.States) :
|
||||
{φsΛ : WickContraction φs.length // HaveEqTime φsΛ} ≃
|
||||
Σ (φsΛ : {φsΛ : WickContraction φs.length // φsΛ ∈ EqTimeOnly φs ∧ φsΛ ≠ empty}),
|
||||
{φssucΛ : WickContraction [φsΛ.1]ᵘᶜ.length // ¬ HaveEqTime φssucΛ} where
|
||||
toFun φsΛ := ⟨⟨φsΛ.1.subContraction (eqTimeContractSet φsΛ.1) (eqTimeContractSet_subset φsΛ.1),
|
||||
subContraction_eqTimeContractSet_eqTimeOnly φsΛ.1,
|
||||
subContraction_eqTimeContractSet_not_empty_of_haveEqTime φsΛ.1 φsΛ.2⟩,
|
||||
⟨φsΛ.1.quotContraction (eqTimeContractSet φsΛ.1) (eqTimeContractSet_subset φsΛ.1),
|
||||
quotContraction_eqTimeContractSet_not_haveEqTime φsΛ.1⟩⟩
|
||||
invFun φsΛ := ⟨join φsΛ.1.1 φsΛ.2.1 , join_haveEqTime_of_eqTimeOnly_nonEmpty φsΛ.1.1 φsΛ.1.2.1 φsΛ.1.2.2 φsΛ.2⟩
|
||||
left_inv φsΛ := by
|
||||
match φsΛ with
|
||||
| ⟨φsΛ, h1, h2⟩ =>
|
||||
simp
|
||||
exact join_sub_quot φsΛ φsΛ.eqTimeContractSet (eqTimeContractSet_subset φsΛ)
|
||||
right_inv φsΛ' := by
|
||||
match φsΛ' with
|
||||
| ⟨⟨φsΛ, h1⟩, ⟨φsucΛ, h2⟩⟩ =>
|
||||
have hs : subContraction (φsΛ.join φsucΛ).eqTimeContractSet (
|
||||
eqTimeContractSet_subset (φsΛ.join φsucΛ)) = φsΛ := by
|
||||
apply Subtype.ext
|
||||
ext a
|
||||
simp [subContraction]
|
||||
rw [join_eqTimeContractSet]
|
||||
rw [eqTimeContractSet_of_not_haveEqTime h2]
|
||||
simp
|
||||
rw [eqTimeContractSet_of_mem_eqTimeOnly h1.1]
|
||||
refine hasEqTimeEquiv_ext_sigma ?_ ?_
|
||||
· simp
|
||||
exact hs
|
||||
· simp
|
||||
apply Subtype.ext
|
||||
ext a
|
||||
simp [quotContraction]
|
||||
rw [mem_congr_iff]
|
||||
rw [mem_join_right_iff]
|
||||
simp
|
||||
rw [uncontractedListEmd_congr hs]
|
||||
rw [Finset.map_map]
|
||||
|
||||
|
||||
lemma sum_haveEqTime (φs : List 𝓕.States)
|
||||
(f : WickContraction φs.length → M) [AddCommMonoid M]:
|
||||
∑ (φsΛ : {φsΛ : WickContraction φs.length // HaveEqTime φsΛ}), f φsΛ =
|
||||
∑ (φsΛ : {φsΛ : WickContraction φs.length // φsΛ ∈ EqTimeOnly φs ∧ φsΛ ≠ empty}),
|
||||
∑ (φssucΛ : {φssucΛ : WickContraction [φsΛ.1]ᵘᶜ.length // ¬ HaveEqTime φssucΛ}),
|
||||
f (join φsΛ.1 φssucΛ.1) := by
|
||||
rw [← (hasEqTimeEquiv φs).symm.sum_comp]
|
||||
erw [Finset.sum_sigma]
|
||||
rfl
|
||||
|
||||
end
|
||||
end WickContraction
|
|
@ -83,4 +83,27 @@ lemma getDual?_empty_eq_none (i : Fin n) : empty.getDual? i = none := by
|
|||
lemma uncontracted_empty {n : ℕ} : (@empty n).uncontracted = Finset.univ := by
|
||||
simp [ uncontracted]
|
||||
|
||||
lemma uncontracted_card_le (c : WickContraction n) : c.uncontracted.card ≤ n := by
|
||||
simp [uncontracted]
|
||||
apply le_of_le_of_eq (Finset.card_filter_le _ _)
|
||||
simp
|
||||
|
||||
lemma uncontracted_card_eq_iff (c : WickContraction n) :
|
||||
c.uncontracted.card = n ↔ c = empty := by
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
have hc : c.uncontracted.card = (Finset.univ (α := Fin n)).card := by simpa using h
|
||||
simp only [uncontracted] at hc
|
||||
rw [Finset.card_filter_eq_iff] at hc
|
||||
by_contra hn
|
||||
have hc' := exists_pair_of_not_eq_empty c hn
|
||||
obtain ⟨i, j, hij⟩ := hc'
|
||||
have hci : c.getDual? i = some j := by
|
||||
rw [@getDual?_eq_some_iff_mem]
|
||||
exact hij
|
||||
simp_all
|
||||
· intro h
|
||||
subst h
|
||||
simp
|
||||
|
||||
end WickContraction
|
||||
|
|
|
@ -367,6 +367,12 @@ def uncontractedListEmd {φs : List 𝓕.States} {φsΛ : WickContraction φs.le
|
|||
((finCongr (by simp [uncontractedListGet])).trans φsΛ.uncontractedIndexEquiv).toEmbedding.trans
|
||||
(Function.Embedding.subtype fun x => x ∈ φsΛ.uncontracted)
|
||||
|
||||
lemma uncontractedListEmd_congr {φs : List 𝓕.States} {φsΛ φsΛ' : WickContraction φs.length}
|
||||
(h : φsΛ = φsΛ') :
|
||||
φsΛ.uncontractedListEmd = (finCongr (by simp [h])).toEmbedding.trans φsΛ'.uncontractedListEmd := by
|
||||
subst h
|
||||
rfl
|
||||
|
||||
lemma uncontractedListEmd_toFun_eq_get (φs : List 𝓕.States) (φsΛ : WickContraction φs.length) :
|
||||
(uncontractedListEmd (φsΛ := φsΛ)).toFun =
|
||||
φsΛ.uncontractedList.get ∘ (finCongr (by simp [uncontractedListGet])):= by
|
||||
|
@ -406,6 +412,17 @@ lemma uncontractedListEmd_finset_disjoint_left {φs : List 𝓕.States} {φsΛ :
|
|||
rw [mem_uncontracted_iff_not_contracted] at h1
|
||||
exact h1 b hb
|
||||
|
||||
lemma uncontractedListEmd_finset_not_mem {φs : List 𝓕.States} {φsΛ : WickContraction φs.length}
|
||||
(a : Finset (Fin [φsΛ]ᵘᶜ.length)) :
|
||||
a.map uncontractedListEmd ∉ φsΛ.1 := by
|
||||
by_contra hn
|
||||
have h1 := uncontractedListEmd_finset_disjoint_left a (a.map uncontractedListEmd) hn
|
||||
simp at h1
|
||||
have h2 := φsΛ.2.1 (a.map uncontractedListEmd) hn
|
||||
rw [h1] at h2
|
||||
simp at h2
|
||||
|
||||
|
||||
@[simp]
|
||||
lemma getElem_uncontractedListEmd {φs : List 𝓕.States} {φsΛ : WickContraction φs.length}
|
||||
(k : Fin [φsΛ]ᵘᶜ.length) : φs[(uncontractedListEmd k).1] = [φsΛ]ᵘᶜ[k.1] := by
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue