refactor: Lint

This commit is contained in:
jstoobysmith 2024-09-15 10:14:34 -04:00
parent 5327c2249f
commit 016fb72af8
7 changed files with 113 additions and 85 deletions

View file

@ -6,7 +6,6 @@ Authors: Joseph Tooby-Smith
import Mathlib.Data.Complex.Exponential
import Mathlib.Geometry.Manifold.Instances.Real
import Mathlib.LinearAlgebra.Matrix.ToLin
import HepLean.Meta.InformalDef
/-!
# The Standard Model

View file

@ -11,7 +11,7 @@ import Mathlib.Geometry.Manifold.VectorBundle.SmoothSection
import Mathlib.Geometry.Manifold.Instances.Real
import Mathlib.Analysis.InnerProductSpace.Basic
import Mathlib.Geometry.Manifold.ContMDiff.Product
import HepLean.Meta.InformalDef
import HepLean.Meta.Informal
/-!
# The Higgs field
@ -175,8 +175,8 @@ def ofReal (a : ) : HiggsField := (HiggsVec.ofReal a).toField
def zero : HiggsField := ofReal 0
informal_lemma zero_is_zero_section where
physics := "The zero Higgs field is the zero section of the Higgs bundle."
math := "The HiggsField `zero` defined by `ofReal 0`
physics : "The zero Higgs field is the zero section of the Higgs bundle."
math : "The HiggsField `zero` defined by `ofReal 0`
is the constant zero-section of the bundle `HiggsBundle`."
end HiggsField

View file

@ -191,9 +191,9 @@ theorem rotate_fst_real_snd_zero (φ : HiggsVec) :
tail_cons, smul_zero]
informal_lemma stablity_group where
physics := "The Higgs boson breaks electroweak symmetry down to the electromagnetic force."
math := "The stablity group of the action of `rep` on `![0, Complex.ofReal ‖φ‖]`,
for non-zero `‖φ‖` is the `SU(3) x U(1)` subgroup of
physics : "The Higgs boson breaks electroweak symmetry down to the electromagnetic force."
math : "The stablity group of the action of `rep` on `![0, Complex.ofReal ‖φ‖]`,
for non-zero `‖φ‖` is the `SU(3) x U(1)` subgroup of
`gaugeGroup := SU(3) x SU(2) x U(1)` with the embedding given by
`(g, e^{i θ}) ↦ (g, diag (e ^ {3 * i θ}, e ^ {- 3 * i θ}), e^{i θ})`."

View file

@ -5,7 +5,7 @@ Authors: Joseph Tooby-Smith
-/
import Mathlib.Algebra.QuadraticDiscriminant
import HepLean.StandardModel.HiggsBoson.PointwiseInnerProd
import HepLean.Meta.InformalDef
import HepLean.Meta.Informal
/-!
# The potential of the Higgs field
@ -316,9 +316,9 @@ lemma isBounded_of_𝓵_pos (h : 0 < P.𝓵) : P.IsBounded := by
linarith
informal_lemma isBounded_iff_of_𝓵_zero where
physics := "When there is no quartic coupling, the potential is bounded iff the mass squared is
physics : "When there is no quartic coupling, the potential is bounded iff the mass squared is
non-positive."
math := "For `P : Potential` then P.IsBounded if and only if P.μ2 ≤ 0.
math : "For `P : Potential` then P.IsBounded if and only if P.μ2 ≤ 0.
That is to say `- P.μ2 * ‖φ‖_H ^ 2 x` is bounded below if and only if `P.μ2 ≤ 0`."
/-!