refactor: Lint
This commit is contained in:
parent
5327c2249f
commit
016fb72af8
7 changed files with 113 additions and 85 deletions
|
@ -11,7 +11,7 @@ import Mathlib.Geometry.Manifold.VectorBundle.SmoothSection
|
|||
import Mathlib.Geometry.Manifold.Instances.Real
|
||||
import Mathlib.Analysis.InnerProductSpace.Basic
|
||||
import Mathlib.Geometry.Manifold.ContMDiff.Product
|
||||
import HepLean.Meta.InformalDef
|
||||
import HepLean.Meta.Informal
|
||||
/-!
|
||||
|
||||
# The Higgs field
|
||||
|
@ -175,8 +175,8 @@ def ofReal (a : ℝ) : HiggsField := (HiggsVec.ofReal a).toField
|
|||
def zero : HiggsField := ofReal 0
|
||||
|
||||
informal_lemma zero_is_zero_section where
|
||||
physics := "The zero Higgs field is the zero section of the Higgs bundle."
|
||||
math := "The HiggsField `zero` defined by `ofReal 0`
|
||||
physics :≈ "The zero Higgs field is the zero section of the Higgs bundle."
|
||||
math :≈ "The HiggsField `zero` defined by `ofReal 0`
|
||||
is the constant zero-section of the bundle `HiggsBundle`."
|
||||
|
||||
end HiggsField
|
||||
|
|
|
@ -191,9 +191,9 @@ theorem rotate_fst_real_snd_zero (φ : HiggsVec) :
|
|||
tail_cons, smul_zero]
|
||||
|
||||
informal_lemma stablity_group where
|
||||
physics := "The Higgs boson breaks electroweak symmetry down to the electromagnetic force."
|
||||
math := "The stablity group of the action of `rep` on `![0, Complex.ofReal ‖φ‖]`,
|
||||
for non-zero `‖φ‖` is the `SU(3) x U(1)` subgroup of
|
||||
physics :≈ "The Higgs boson breaks electroweak symmetry down to the electromagnetic force."
|
||||
math :≈ "The stablity group of the action of `rep` on `![0, Complex.ofReal ‖φ‖]`,
|
||||
for non-zero `‖φ‖` is the `SU(3) x U(1)` subgroup of
|
||||
`gaugeGroup := SU(3) x SU(2) x U(1)` with the embedding given by
|
||||
`(g, e^{i θ}) ↦ (g, diag (e ^ {3 * i θ}, e ^ {- 3 * i θ}), e^{i θ})`."
|
||||
|
||||
|
|
|
@ -5,7 +5,7 @@ Authors: Joseph Tooby-Smith
|
|||
-/
|
||||
import Mathlib.Algebra.QuadraticDiscriminant
|
||||
import HepLean.StandardModel.HiggsBoson.PointwiseInnerProd
|
||||
import HepLean.Meta.InformalDef
|
||||
import HepLean.Meta.Informal
|
||||
/-!
|
||||
# The potential of the Higgs field
|
||||
|
||||
|
@ -316,9 +316,9 @@ lemma isBounded_of_𝓵_pos (h : 0 < P.𝓵) : P.IsBounded := by
|
|||
linarith
|
||||
|
||||
informal_lemma isBounded_iff_of_𝓵_zero where
|
||||
physics := "When there is no quartic coupling, the potential is bounded iff the mass squared is
|
||||
physics :≈ "When there is no quartic coupling, the potential is bounded iff the mass squared is
|
||||
non-positive."
|
||||
math := "For `P : Potential` then P.IsBounded if and only if P.μ2 ≤ 0.
|
||||
math :≈ "For `P : Potential` then P.IsBounded if and only if P.μ2 ≤ 0.
|
||||
That is to say `- P.μ2 * ‖φ‖_H ^ 2 x` is bounded below if and only if `P.μ2 ≤ 0`."
|
||||
|
||||
/-!
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue