feat: Add results related to MSSM

This commit is contained in:
jstoobysmith 2024-04-17 16:23:40 -04:00
parent c13a474330
commit 01d4c0c81b
10 changed files with 1553 additions and 2 deletions

View file

@ -0,0 +1,79 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.MSSMNu.Basic
/-!
# The definition of the solution B₃ and properties thereof
We define $B_3$ and show that it is a double point of the cubic.
# References
The main reference for the material in this file is:
- https://arxiv.org/pdf/2107.07926.pdf
-/
universe v u
namespace MSSMACC
open MSSMCharges
open MSSMACCs
open BigOperators
/-- $B_3$ is the charge which is $B-L$ in all families, but with the third
family of the opposite sign. -/
def B₃AsCharge : MSSMACC.charges := toSpecies.symm
⟨fun s => fun i =>
match s, i with
| 0, 0 => 1
| 0, 1 => 1
| 0, 2 => - 1
| 1, 0 => - 1
| 1, 1 => - 1
| 1, 2 => 1
| 2, 0 => - 1
| 2, 1 => - 1
| 2, 2 => 1
| 3, 0 => - 3
| 3, 1 => - 3
| 3, 2 => 3
| 4, 0 => 3
| 4, 1 => 3
| 4, 2 => - 3
| 5, 0 => 3
| 5, 1 => 3
| 5, 2 => - 3,
fun s =>
match s with
| 0 => -3
| 1 => 3⟩
/-- $B_3$ as a solution. -/
def B₃ : MSSMACC.Sols :=
MSSMACC.AnomalyFreeMk B₃AsCharge (by rfl) (by rfl) (by rfl) (by rfl) (by rfl) (by rfl)
lemma B₃_val : B₃.val = B₃AsCharge := by
rfl
lemma doublePoint_B₃_B₃ (R : MSSMACC.LinSols) : cubeTriLin (B₃.val, B₃.val, R.val) = 0 := by
rw [← TriLinearSymm.toFun_eq_coe]
simp only [cubeTriLin, cubeTriLinToFun, MSSMSpecies_numberCharges]
rw [Fin.sum_univ_three]
rw [B₃_val]
rw [B₃AsCharge]
repeat rw [toSMSpecies_toSpecies_inv]
rw [Hd_toSpecies_inv, Hu_toSpecies_inv]
simp only [mul_one, Fin.isValue, toSMSpecies_apply, one_mul, mul_neg, neg_neg, neg_mul, Hd_apply,
Fin.reduceFinMk, Hu_apply]
have hLin := R.linearSol
simp at hLin
have h0 := hLin 0
have h2 := hLin 2
simp [Fin.sum_univ_three] at h0 h2
linear_combination 9 * h0 - 24 * h2
end MSSMACC

View file

@ -27,7 +27,7 @@ open BigOperators
@[simps!]
def MSSMCharges : ACCSystemCharges := ACCSystemChargesMk 20
/-- THe vector spaces of charges of one species of fermions in the MSSM. -/
/-- The vector spaces of charges of one species of fermions in the MSSM. -/
@[simps!]
def MSSMSpecies : ACCSystemCharges := ACCSystemChargesMk 3

View file

@ -0,0 +1,54 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.MSSMNu.Basic
import Mathlib.Tactic.Polyrith
/-!
# Hypercharge in MSSM.
Relavent definitions for the MSSM hypercharge.
-/
universe v u
namespace MSSMACC
open MSSMCharges
open MSSMACCs
open BigOperators
/-- The hypercharge as an element of `MSSMACC.charges`. -/
def YAsCharge : MSSMACC.charges := toSpecies.invFun
⟨fun s => fun i =>
match s, i with
| 0, 0 => 1
| 0, 1 => 1
| 0, 2 => 1
| 1, 0 => -4
| 1, 1 => -4
| 1, 2 => -4
| 2, 0 => 2
| 2, 1 => 2
| 2, 2 => 2
| 3, 0 => -3
| 3, 1 => -3
| 3, 2 => -3
| 4, 0 => 6
| 4, 1 => 6
| 4, 2 => 6
| 5, 0 => 0
| 5, 1 => 0
| 5, 2 => 0,
fun s =>
match s with
| 0 => -3
| 1 => 3⟩
/-- The hypercharge as an element of `MSSMACC.Sols`. -/
def Y : MSSMACC.Sols :=
MSSMACC.AnomalyFreeMk YAsCharge (by rfl) (by rfl) (by rfl) (by rfl) (by rfl) (by rfl)
end MSSMACC

View file

@ -0,0 +1,92 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.MSSMNu.Basic
import HepLean.AnomalyCancellation.MSSMNu.Y3
import HepLean.AnomalyCancellation.MSSMNu.B3
import Mathlib.Tactic.Polyrith
/-!
# The line through B₃ and Y₃
We give properties of lines through `B₃` and `Y₃`. We show that every point on this line
is a solution to the quadratic `lineY₃B₃Charges_quad` and a double point of the cubic
`lineY₃B₃_doublePoint`.
# References
The main reference for the material in this file is:
- https://arxiv.org/pdf/2107.07926.pdf
-/
universe v u
namespace MSSMACC
open MSSMCharges
open MSSMACCs
open BigOperators
/-- The line through $Y_3$ and $B_3$ as `LinSols`. -/
def lineY₃B₃Charges (a b : ) : MSSMACC.LinSols := a • Y₃.1.1 + b • B₃.1.1
lemma lineY₃B₃Charges_quad (a b : ) : accQuad (lineY₃B₃Charges a b).val = 0 := by
change accQuad (a • Y₃.val + b • B₃.val) = 0
rw [accQuad]
rw [quadBiLin.toHomogeneousQuad_add]
rw [quadBiLin.toHomogeneousQuad.map_smul]
rw [quadBiLin.toHomogeneousQuad.map_smul]
rw [quadBiLin.map_smul₁, quadBiLin.map_smul₂]
erw [quadSol Y₃.1, quadSol B₃.1]
simp
apply Or.inr ∘ Or.inr
rfl
lemma lineY₃B₃Charges_cubic (a b : ) : accCube (lineY₃B₃Charges a b).val = 0 := by
change accCube (a • Y₃.val + b • B₃.val) = 0
rw [accCube]
rw [cubeTriLin.toCubic_add]
rw [cubeTriLin.toCubic.map_smul]
rw [cubeTriLin.toCubic.map_smul]
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂, cubeTriLin.map_smul₃]
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂, cubeTriLin.map_smul₃]
erw [Y₃.cubicSol, B₃.cubicSol]
rw [show cubeTriLin (Y₃.val, Y₃.val, B₃.val) = 0 by rfl]
rw [show cubeTriLin (B₃.val, B₃.val, Y₃.val) = 0 by rfl]
simp
/-- The line through $Y_3$ and $B_3$ as `Sols`. -/
def lineY₃B₃ (a b : ) : MSSMACC.Sols :=
AnomalyFreeMk' (lineY₃B₃Charges a b) (lineY₃B₃Charges_quad a b) (lineY₃B₃Charges_cubic a b)
lemma doublePoint_Y₃_B₃ (R : MSSMACC.LinSols) :
cubeTriLin (Y₃.val, B₃.val, R.val) = 0 := by
rw [← TriLinearSymm.toFun_eq_coe]
simp only [cubeTriLin, cubeTriLinToFun, MSSMSpecies_numberCharges]
rw [Fin.sum_univ_three]
rw [B₃_val, Y₃_val]
rw [B₃AsCharge, Y₃AsCharge]
repeat rw [toSMSpecies_toSpecies_inv]
rw [Hd_toSpecies_inv, Hu_toSpecies_inv]
rw [Hd_toSpecies_inv, Hu_toSpecies_inv]
simp
have hLin := R.linearSol
simp at hLin
have h1 := hLin 1
have h2 := hLin 2
have h3 := hLin 3
simp [Fin.sum_univ_three] at h1 h2 h3
linear_combination -(12 * h2) + 9 * h1 + 3 * h3
lemma lineY₃B₃_doublePoint (R : MSSMACC.LinSols) (a b : ) :
cubeTriLin ((lineY₃B₃ a b).val, (lineY₃B₃ a b).val, R.val) = 0 := by
change cubeTriLin (a • Y₃.val + b • B₃.val , a • Y₃.val + b • B₃.val, R.val ) = 0
rw [cubeTriLin.map_add₂, cubeTriLin.map_add₁, cubeTriLin.map_add₁]
repeat rw [cubeTriLin.map_smul₂, cubeTriLin.map_smul₁]
rw [doublePoint_B₃_B₃, doublePoint_Y₃_Y₃, doublePoint_Y₃_B₃]
rw [cubeTriLin.swap₁, doublePoint_Y₃_B₃]
simp
end MSSMACC

View file

@ -0,0 +1,191 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.MSSMNu.Basic
import HepLean.AnomalyCancellation.MSSMNu.LineY3B3
import Mathlib.Tactic.Polyrith
import Mathlib.Tactic.Linarith
/-!
# The type of solutions perpendicular to `Y₃` and `B₃`
We define the type of solutions which are orthogonal to `Y₃` and `B₃` and prove some basic lemmas
about them.
# References
The main reference for the material in this file is:
- https://arxiv.org/pdf/2107.07926.pdf
-/
universe v u
namespace MSSMACC
open MSSMCharges
open MSSMACCs
open BigOperators
/-- The type of linear solutions orthogonal to $Y_3$ and $B_3$. -/
structure AnomalyFreePerp extends MSSMACC.LinSols where
perpY₃ : dot (Y₃.val, val) = 0
perpB₃ : dot (B₃.val, val) = 0
/-- The projection of an object in `MSSMACC.AnomalyFreeLinear` onto the subspace
orthgonal to `Y₃` and`B₃`. -/
def proj (T : MSSMACC.LinSols) : MSSMACC.AnomalyFreePerp :=
⟨(dot (B₃.val, T.val) - dot (Y₃.val, T.val)) • Y₃.1.1
+ (dot (Y₃.val, T.val) - 2 * dot (B₃.val, T.val)) • B₃.1.1
+ dot (Y₃.val, B₃.val) • T,
by
change dot (_, _ • Y₃.val + _ • B₃.val + _ • T.val) = 0
rw [dot.map_add₂, dot.map_add₂]
rw [dot.map_smul₂, dot.map_smul₂, dot.map_smul₂]
rw [show dot (Y₃.val, B₃.val) = 108 by rfl]
rw [show dot (Y₃.val, Y₃.val) = 216 by rfl]
ring,
by
change dot (_, _ • Y₃.val + _ • B₃.val + _ • T.val) = 0
rw [dot.map_add₂, dot.map_add₂]
rw [dot.map_smul₂, dot.map_smul₂, dot.map_smul₂]
rw [show dot (Y₃.val, B₃.val) = 108 by rfl]
rw [show dot (B₃.val, Y₃.val) = 108 by rfl]
rw [show dot (B₃.val, B₃.val) = 108 by rfl]
ring⟩
lemma proj_val (T : MSSMACC.LinSols) :
(proj T).val = (dot (B₃.val, T.val) - dot (Y₃.val, T.val)) • Y₃.val +
( (dot (Y₃.val, T.val) - 2 * dot (B₃.val, T.val))) • B₃.val +
dot (Y₃.val, B₃.val) • T.val := by
rfl
lemma Y₃_plus_B₃_plus_proj (T : MSSMACC.LinSols) (a b c : ) :
a • Y₃.val + b • B₃.val + c • (proj T).val =
(a + c * (dot (B₃.val, T.val) - dot (Y₃.val, T.val))) • Y₃.val
+ (b + c * (dot (Y₃.val, T.val) - 2 * dot (B₃.val, T.val))) • B₃.val
+ (dot (Y₃.val, B₃.val) * c) • T.val:= by
rw [proj_val]
rw [DistribMulAction.smul_add, DistribMulAction.smul_add]
rw [add_assoc (_ • _ • Y₃.val), ← add_assoc (_ • Y₃.val + _ • B₃.val), add_assoc (_ • Y₃.val)]
rw [add_comm (_ • B₃.val) (_ • _ • Y₃.val), ← add_assoc (_ • Y₃.val)]
rw [← MulAction.mul_smul, ← Module.add_smul]
repeat rw [add_assoc]
apply congrArg
rw [← add_assoc, ← MulAction.mul_smul, ← Module.add_smul]
apply congrArg
simp only [HSMul.hSMul, SMul.smul, MSSMACC_numberCharges, Fin.isValue, Fin.reduceFinMk]
funext i
linarith
lemma quad_Y₃_proj (T : MSSMACC.LinSols) :
quadBiLin (Y₃.val, (proj T).val) = dot (Y₃.val, B₃.val) * quadBiLin (Y₃.val, T.val) := by
rw [proj_val]
rw [quadBiLin.map_add₂, quadBiLin.map_add₂]
rw [quadBiLin.map_smul₂, quadBiLin.map_smul₂, quadBiLin.map_smul₂]
rw [show quadBiLin (Y₃.val, B₃.val) = 0 by rfl]
rw [show quadBiLin (Y₃.val, Y₃.val) = 0 by rfl]
ring
lemma quad_B₃_proj (T : MSSMACC.LinSols) :
quadBiLin (B₃.val, (proj T).val) = dot (Y₃.val, B₃.val) * quadBiLin (B₃.val, T.val) := by
rw [proj_val]
rw [quadBiLin.map_add₂, quadBiLin.map_add₂]
rw [quadBiLin.map_smul₂, quadBiLin.map_smul₂, quadBiLin.map_smul₂]
rw [show quadBiLin (B₃.val, Y₃.val) = 0 by rfl]
rw [show quadBiLin (B₃.val, B₃.val) = 0 by rfl]
ring
lemma quad_self_proj (T : MSSMACC.Sols) :
quadBiLin (T.val, (proj T.1.1).val) =
(dot (B₃.val, T.val) - dot (Y₃.val, T.val)) * quadBiLin (Y₃.val, T.val) +
(dot (Y₃.val, T.val) - 2 * dot (B₃.val, T.val)) * quadBiLin (B₃.val, T.val) := by
rw [proj_val]
rw [quadBiLin.map_add₂, quadBiLin.map_add₂]
rw [quadBiLin.map_smul₂, quadBiLin.map_smul₂, quadBiLin.map_smul₂]
erw [quadSol T.1]
rw [quadBiLin.swap T.val Y₃.val, quadBiLin.swap T.val B₃.val]
ring
lemma quad_proj (T : MSSMACC.Sols) :
quadBiLin ((proj T.1.1).val, (proj T.1.1).val) = 2 * (dot (Y₃.val, B₃.val)) *
((dot (B₃.val, T.val) - dot (Y₃.val, T.val)) * quadBiLin (Y₃.val, T.val) +
(dot (Y₃.val, T.val) - 2 * dot (B₃.val, T.val)) * quadBiLin (B₃.val, T.val) ) := by
nth_rewrite 1 [proj_val]
repeat rw [quadBiLin.map_add₁]
repeat rw [quadBiLin.map_smul₁]
rw [quad_Y₃_proj, quad_B₃_proj, quad_self_proj]
ring
lemma cube_proj_proj_Y₃ (T : MSSMACC.LinSols) :
cubeTriLin ((proj T).val, (proj T).val, Y₃.val) =
(dot (Y₃.val, B₃.val))^2 * cubeTriLin (T.val, T.val, Y₃.val):= by
rw [proj_val]
rw [cubeTriLin.map_add₁, cubeTriLin.map_add₂]
erw [lineY₃B₃_doublePoint]
rw [cubeTriLin.map_add₂]
rw [cubeTriLin.swap₂]
rw [cubeTriLin.map_add₁, cubeTriLin.map_smul₁, cubeTriLin.map_smul₃]
rw [doublePoint_Y₃_Y₃]
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₃, cubeTriLin.swap₁]
rw [doublePoint_Y₃_B₃]
rw [cubeTriLin.map_add₂]
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂]
rw [cubeTriLin.swap₁, cubeTriLin.swap₂]
rw [doublePoint_Y₃_Y₃]
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂]
rw [cubeTriLin.swap₁, cubeTriLin.swap₂, cubeTriLin.swap₁]
rw [doublePoint_Y₃_B₃]
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂]
ring
lemma cube_proj_proj_B₃ (T : MSSMACC.LinSols) :
cubeTriLin ((proj T).val, (proj T).val, B₃.val) =
(dot (Y₃.val, B₃.val))^2 * cubeTriLin (T.val, T.val, B₃.val):= by
rw [proj_val]
rw [cubeTriLin.map_add₁, cubeTriLin.map_add₂]
erw [lineY₃B₃_doublePoint]
rw [cubeTriLin.map_add₂, cubeTriLin.swap₂, cubeTriLin.map_add₁, cubeTriLin.map_smul₁,
cubeTriLin.map_smul₃, doublePoint_Y₃_B₃]
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₃, cubeTriLin.swap₁, doublePoint_B₃_B₃]
rw [cubeTriLin.map_add₂, cubeTriLin.map_smul₁, cubeTriLin.map_smul₂]
rw [cubeTriLin.swap₁, cubeTriLin.swap₂, doublePoint_Y₃_B₃]
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂, cubeTriLin.swap₁, cubeTriLin.swap₂,
cubeTriLin.swap₁, doublePoint_B₃_B₃]
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂]
ring
lemma cube_proj_proj_self (T : MSSMACC.Sols) :
cubeTriLin ((proj T.1.1).val, (proj T.1.1).val, T.val) =
2 * dot (Y₃.val, B₃.val) *
((dot (B₃.val, T.val) - dot (Y₃.val, T.val)) * cubeTriLin (T.val, T.val, Y₃.val) +
( dot (Y₃.val, T.val)- 2 * dot (B₃.val, T.val)) * cubeTriLin (T.val, T.val, B₃.val)) := by
rw [proj_val]
rw [cubeTriLin.map_add₁, cubeTriLin.map_add₂]
erw [lineY₃B₃_doublePoint]
repeat rw [cubeTriLin.map_add₁]
repeat rw [cubeTriLin.map_smul₁]
repeat rw [cubeTriLin.map_add₂]
repeat rw [cubeTriLin.map_smul₂]
erw [T.cubicSol]
rw [cubeTriLin.swap₁ Y₃.val T.val T.val, cubeTriLin.swap₂ T.val Y₃.val T.val]
rw [cubeTriLin.swap₁ B₃.val T.val T.val, cubeTriLin.swap₂ T.val B₃.val T.val]
ring
lemma cube_proj (T : MSSMACC.Sols) :
cubeTriLin ((proj T.1.1).val, (proj T.1.1).val, (proj T.1.1).val) =
3 * dot (Y₃.val, B₃.val) ^ 2 *
((dot (B₃.val, T.val) - dot (Y₃.val, T.val)) * cubeTriLin (T.val, T.val, Y₃.val) +
(dot (Y₃.val, T.val) - 2 * dot (B₃.val, T.val)) * cubeTriLin (T.val, T.val, B₃.val)) := by
nth_rewrite 3 [proj_val]
repeat rw [cubeTriLin.map_add₃]
repeat rw [cubeTriLin.map_smul₃]
rw [cube_proj_proj_Y₃, cube_proj_proj_B₃, cube_proj_proj_self]
ring
end MSSMACC

View file

@ -0,0 +1,156 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.MSSMNu.Basic
import Mathlib.Tactic.Polyrith
import HepLean.AnomalyCancellation.GroupActions
universe v u
/-!
# Permutations of MSSM charges and solutions
The three family MSSM charges has a family permutation of S₃⁶. This file defines this group
and its action on the MSSM.
-/
open Nat
open Finset
namespace MSSM
open MSSMCharges
open MSSMACCs
open BigOperators
/-- The group of family permutations is `S₃⁶`-/
@[simp]
def permGroup := Fin 6 → Equiv.Perm (Fin 3)
@[simp]
instance : Group permGroup := Pi.group
/-- The image of an element of `permGroup` under the representation on charges. -/
@[simps!]
def chargeMap (f : permGroup) : MSSMCharges.charges →ₗ[] MSSMCharges.charges where
toFun S := toSpecies.symm (fun i => toSMSpecies i S ∘ f i, Prod.snd (toSpecies S))
map_add' S T := by
simp only
rw [charges_eq_toSpecies_eq]
apply And.intro
intro i
rw [(toSMSpecies i).map_add]
rw [toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv]
simp only
erw [(toSMSpecies i).map_add]
rfl
apply And.intro
rw [Hd.map_add, Hd_toSpecies_inv, Hd_toSpecies_inv, Hd_toSpecies_inv]
rfl
rw [Hu.map_add, Hu_toSpecies_inv, Hu_toSpecies_inv, Hu_toSpecies_inv]
rfl
map_smul' a S := by
simp only
rw [charges_eq_toSpecies_eq]
apply And.intro
intro i
rw [(toSMSpecies i).map_smul, toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv]
rfl
apply And.intro
rfl
rfl
lemma chargeMap_toSpecies (f : permGroup) (S : MSSMCharges.charges) (j : Fin 6) :
toSMSpecies j (chargeMap f S) = toSMSpecies j S ∘ f j := by
erw [toSMSpecies_toSpecies_inv]
/-- The representation of `permGroup` acting on the vector space of charges. -/
@[simp]
def repCharges : Representation (permGroup) (MSSMCharges).charges where
toFun f := chargeMap f⁻¹
map_mul' f g :=by
simp only [permGroup, mul_inv_rev]
apply LinearMap.ext
intro S
rw [charges_eq_toSpecies_eq]
apply And.intro
intro i
simp only [ Pi.mul_apply, Pi.inv_apply, Equiv.Perm.coe_mul, LinearMap.mul_apply]
rw [chargeMap_toSpecies, chargeMap_toSpecies]
simp only [Pi.mul_apply, Pi.inv_apply]
rw [chargeMap_toSpecies]
rfl
apply And.intro
rfl
rfl
map_one' := by
apply LinearMap.ext
intro S
rw [charges_eq_toSpecies_eq]
apply And.intro
intro i
erw [toSMSpecies_toSpecies_inv]
rfl
apply And.intro
rfl
rfl
lemma repCharges_toSMSpecies (f : permGroup) (S : MSSMCharges.charges) (j : Fin 6) :
toSMSpecies j (repCharges f S) = toSMSpecies j S ∘ f⁻¹ j := by
erw [toSMSpecies_toSpecies_inv]
lemma toSpecies_sum_invariant (m : ) (f : permGroup) (S : MSSMCharges.charges) (j : Fin 6) :
∑ i, ((fun a => a ^ m) ∘ toSMSpecies j (repCharges f S)) i =
∑ i, ((fun a => a ^ m) ∘ toSMSpecies j S) i := by
erw [repCharges_toSMSpecies]
change ∑ i : Fin 3, ((fun a => a ^ m) ∘ _) (⇑(f⁻¹ _) i) = ∑ i : Fin 3, ((fun a => a ^ m) ∘ _) i
refine Equiv.Perm.sum_comp _ _ _ ?_
simp only [permGroup, Fin.isValue, Pi.inv_apply, ne_eq, coe_univ, Set.subset_univ]
lemma Hd_invariant (f : permGroup) (S : MSSMCharges.charges) :
Hd (repCharges f S) = Hd S := rfl
lemma Hu_invariant (f : permGroup) (S : MSSMCharges.charges) :
Hu (repCharges f S) = Hu S := rfl
lemma accGrav_invariant (f : permGroup) (S : MSSMCharges.charges) :
accGrav (repCharges f S) = accGrav S :=
accGrav_ext
(by simpa using toSpecies_sum_invariant 1 f S)
(Hd_invariant f S)
(Hu_invariant f S)
lemma accSU2_invariant (f : permGroup) (S : MSSMCharges.charges) :
accSU2 (repCharges f S) = accSU2 S :=
accSU2_ext
(by simpa using toSpecies_sum_invariant 1 f S)
(Hd_invariant f S)
(Hu_invariant f S)
lemma accSU3_invariant (f : permGroup) (S : MSSMCharges.charges) :
accSU3 (repCharges f S) = accSU3 S :=
accSU3_ext
(by simpa using toSpecies_sum_invariant 1 f S)
lemma accYY_invariant (f : permGroup) (S : MSSMCharges.charges) :
accYY (repCharges f S) = accYY S :=
accYY_ext
(by simpa using toSpecies_sum_invariant 1 f S)
(Hd_invariant f S)
(Hu_invariant f S)
lemma accQuad_invariant (f : permGroup) (S : MSSMCharges.charges) :
accQuad (repCharges f S) = accQuad S :=
accQuad_ext
(toSpecies_sum_invariant 2 f S)
(Hd_invariant f S)
(Hu_invariant f S)
lemma accCube_invariant (f : permGroup) (S : MSSMCharges.charges) :
accCube (repCharges f S) = accCube S :=
accCube_ext
(by simpa using toSpecies_sum_invariant 3 f S)
(Hd_invariant f S)
(Hu_invariant f S)
end MSSM

View file

@ -0,0 +1,255 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.MSSMNu.Basic
import HepLean.AnomalyCancellation.MSSMNu.LineY3B3
import HepLean.AnomalyCancellation.MSSMNu.OrthogY3B3
import Mathlib.Tactic.Polyrith
/-!
# Plane Y₃ B₃ and an orthogonal third point
The plane spanned by Y₃, B₃ and third orthogonal point.
# References
- https://arxiv.org/pdf/2107.07926.pdf
-/
universe v u
namespace MSSMACC
open MSSMCharges
open MSSMACCs
open BigOperators
/-- The plane of linear solutions spanned by $Y_3$, $B_3$ and $R$, a point orthogonal
to $Y_3$ and $B_3$. -/
def planeY₃B₃ (R : MSSMACC.AnomalyFreePerp) (a b c : ) : MSSMACC.LinSols :=
a • Y₃.1.1 + b • B₃.1.1 + c • R.1
lemma planeY₃B₃_val (R : MSSMACC.AnomalyFreePerp) (a b c : ) :
(planeY₃B₃ R a b c).val = a • Y₃.val + b • B₃.val + c • R.val := by
rfl
lemma planeY₃B₃_smul (R : MSSMACC.AnomalyFreePerp) (a b c d : ) :
planeY₃B₃ R (d * a) (d * b) (d * c) = d • planeY₃B₃ R a b c := by
apply ACCSystemLinear.LinSols.ext
change _ = d • (planeY₃B₃ R a b c).val
rw [planeY₃B₃_val, planeY₃B₃_val]
rw [smul_add, smul_add]
rw [smul_smul, smul_smul, smul_smul]
lemma planeY₃B₃_eq (R : MSSMACC.AnomalyFreePerp) (a b c : ) (h : a = a' ∧ b = b' ∧ c = c') :
(planeY₃B₃ R a b c) = (planeY₃B₃ R a' b' c') := by
rw [h.1, h.2.1, h.2.2]
lemma planeY₃B₃_val_eq' (R : MSSMACC.AnomalyFreePerp) (a b c : ) (hR' : R.val ≠ 0)
(h : (planeY₃B₃ R a b c).val = (planeY₃B₃ R a' b' c').val) :
a = a' ∧ b = b' ∧ c = c' := by
rw [planeY₃B₃_val, planeY₃B₃_val] at h
have h1 := congrArg (fun S => dot (Y₃.val, S)) h
have h2 := congrArg (fun S => dot (B₃.val, S)) h
simp only [ Fin.isValue, ACCSystemCharges.chargesAddCommMonoid_add, Fin.reduceFinMk] at h1 h2
erw [dot.map_add₂, dot.map_add₂] at h1 h2
erw [dot.map_add₂ Y₃.val (a' • Y₃.val + b' • B₃.val) (c' • R.val)] at h1
erw [dot.map_add₂ B₃.val (a' • Y₃.val + b' • B₃.val) (c' • R.val)] at h2
rw [dot.map_add₂] at h1 h2
rw [dot.map_smul₂, dot.map_smul₂, dot.map_smul₂] at h1 h2
rw [dot.map_smul₂, dot.map_smul₂, dot.map_smul₂] at h1 h2
rw [R.perpY₃] at h1
rw [R.perpB₃] at h2
rw [show dot (Y₃.val, Y₃.val) = 216 by rfl] at h1
rw [show dot (B₃.val, B₃.val) = 108 by rfl] at h2
rw [show dot (Y₃.val, B₃.val) = 108 by rfl] at h1
rw [show dot (B₃.val, Y₃.val) = 108 by rfl] at h2
simp_all
have ha : a = a' := by
linear_combination h1 / 108 + -1 * h2 / 108
have hb : b = b' := by
linear_combination -1 * h1 / 108 + h2 / 54
rw [ha, hb] at h
have h1 := add_left_cancel h
have h1i : c • R.val + (- c') • R.val = 0 := by
rw [h1]
rw [← Module.add_smul]
simp
rw [← Module.add_smul] at h1i
have hR : ∃ i, R.val i ≠ 0 := by
by_contra h
simp at h
have h0 : R.val = 0 := by
funext i
apply h i
exact hR' h0
obtain ⟨i, hi⟩ := hR
have h2 := congrArg (fun S => S i) h1i
change _ = 0 at h2
simp [HSMul.hSMul] at h2
have hc : c + -c' = 0 := by
cases h2 <;> rename_i h2
exact h2
exact (hi h2).elim
have hc : c = c' := by
linear_combination hc
rw [ha, hb, hc]
simp
lemma planeY₃B₃_quad (R : MSSMACC.AnomalyFreePerp) (a b c : ) :
accQuad (planeY₃B₃ R a b c).val = c * (2 * a * quadBiLin (Y₃.val, R.val)
+ 2 * b * quadBiLin (B₃.val, R.val) + c * quadBiLin (R.val, R.val)) := by
rw [planeY₃B₃_val]
erw [BiLinearSymm.toHomogeneousQuad_add]
erw [lineY₃B₃Charges_quad]
rw [quadBiLin.toHomogeneousQuad.map_smul]
rw [quadBiLin.map_add₁, quadBiLin.map_smul₁, quadBiLin.map_smul₁]
rw [quadBiLin.map_smul₂, quadBiLin.map_smul₂]
rw [show (BiLinearSymm.toHomogeneousQuad quadBiLin) R.val = quadBiLin (R.val, R.val) by rfl]
ring
lemma planeY₃B₃_cubic (R : MSSMACC.AnomalyFreePerp) (a b c : ) :
accCube (planeY₃B₃ R a b c).val = c ^ 2 *
(3 * a * cubeTriLin (R.val, R.val, Y₃.val)
+ 3 * b * cubeTriLin (R.val, R.val, B₃.val) + c * cubeTriLin (R.val, R.val, R.val) ) := by
rw [planeY₃B₃_val]
erw [TriLinearSymm.toCubic_add]
erw [lineY₃B₃Charges_cubic]
erw [lineY₃B₃_doublePoint (c • R.1) a b]
rw [cubeTriLin.toCubic.map_smul]
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂]
rw [cubeTriLin.map_add₃, cubeTriLin.map_smul₃, cubeTriLin.map_smul₃]
rw [show (TriLinearSymm.toCubic cubeTriLin) R.val = cubeTriLin (R.val, R.val, R.val) by rfl]
ring
/-- The line in the plane spanned by $Y_3$, $B_3$ and $R$ which is in the quadratic,
as `LinSols`. -/
def lineQuadAFL (R : MSSMACC.AnomalyFreePerp) (c1 c2 c3 : ) : MSSMACC.LinSols :=
planeY₃B₃ R (c2 * quadBiLin (R.val, R.val) - 2 * c3 * quadBiLin (B₃.val, R.val))
(2 * c3 * quadBiLin (Y₃.val, R.val) - c1 * quadBiLin (R.val, R.val))
(2 * c1 * quadBiLin (B₃.val, R.val) - 2 * c2 * quadBiLin (Y₃.val, R.val))
lemma lineQuadAFL_quad (R : MSSMACC.AnomalyFreePerp) (c1 c2 c3 : ) :
accQuad (lineQuadAFL R c1 c2 c3).val = 0 := by
erw [planeY₃B₃_quad]
rw [mul_eq_zero]
apply Or.inr
ring
/-- The line in the plane spanned by $Y_3$, $B_3$ and $R$ which is in the quadratic. -/
def lineQuad (R : MSSMACC.AnomalyFreePerp) (c1 c2 c3 : ) : MSSMACC.QuadSols :=
AnomalyFreeQuadMk' (lineQuadAFL R c1 c2 c3) (lineQuadAFL_quad R c1 c2 c3)
lemma lineQuad_val (R : MSSMACC.AnomalyFreePerp) (c1 c2 c3 : ) :
(lineQuad R c1 c2 c3).val = (planeY₃B₃ R
(c2 * quadBiLin (R.val, R.val) - 2 * c3 * quadBiLin (B₃.val, R.val))
(2 * c3 * quadBiLin (Y₃.val, R.val) - c1 * quadBiLin (R.val, R.val))
(2 * c1 * quadBiLin (B₃.val, R.val) - 2 * c2 * quadBiLin (Y₃.val, R.val))).val := by
rfl
lemma lineQuad_smul (R : MSSMACC.AnomalyFreePerp) (a b c d : ) :
lineQuad R (d * a) (d * b) (d * c) = d • lineQuad R a b c := by
apply ACCSystemQuad.QuadSols.ext
change _ = (d • planeY₃B₃ R _ _ _).val
rw [← planeY₃B₃_smul]
rw [lineQuad_val]
congr 2
ring_nf
/-- A helper function to simplify following expressions. -/
def α₁ (T : MSSMACC.AnomalyFreePerp) : :=
(3 * cubeTriLin (T.val, T.val, B₃.val) * quadBiLin (T.val, T.val) -
2 * cubeTriLin (T.val, T.val, T.val) * quadBiLin (B₃.val, T.val))
/-- A helper function to simplify following expressions. -/
def α₂ (T : MSSMACC.AnomalyFreePerp) : :=
(2 * cubeTriLin (T.val, T.val, T.val) * quadBiLin (Y₃.val, T.val) -
3 * cubeTriLin (T.val, T.val, Y₃.val) * quadBiLin (T.val, T.val))
/-- A helper function to simplify following expressions. -/
def α₃ (T : MSSMACC.AnomalyFreePerp) : :=
6 * ((cubeTriLin (T.val, T.val, Y₃.val)) * quadBiLin (B₃.val, T.val) -
(cubeTriLin (T.val, T.val, B₃.val)) * quadBiLin (Y₃.val, T.val))
lemma lineQuad_cube (R : MSSMACC.AnomalyFreePerp) (c₁ c₂ c₃ : ) :
accCube (lineQuad R c₁ c₂ c₃).val =
- 4 * ( c₁ * quadBiLin (B₃.val, R.val) - c₂ * quadBiLin (Y₃.val, R.val)) ^ 2 *
( α₁ R * c₁ + α₂ R * c₂ + α₃ R * c₃ ) := by
rw [lineQuad_val]
rw [planeY₃B₃_cubic, α₁, α₂, α₃]
ring
/-- The line in the plane spanned by $Y_3$, $B_3$ and $R$ which is in the cubic. -/
def lineCube (R : MSSMACC.AnomalyFreePerp) (a₁ a₂ a₃ : ) :
MSSMACC.LinSols :=
planeY₃B₃ R
(a₂ * cubeTriLin (R.val, R.val, R.val) - 3 * a₃ * cubeTriLin (R.val, R.val, B₃.val))
(3 * a₃ * cubeTriLin (R.val, R.val, Y₃.val) - a₁ * cubeTriLin (R.val, R.val, R.val))
(3 * (a₁ * cubeTriLin (R.val, R.val, B₃.val) - a₂ * cubeTriLin (R.val, R.val, Y₃.val)))
lemma lineCube_smul (R : MSSMACC.AnomalyFreePerp) (a b c d : ) :
lineCube R (d * a) (d * b) (d * c) = d • lineCube R a b c := by
apply ACCSystemLinear.LinSols.ext
change _ = (d • planeY₃B₃ R _ _ _).val
rw [← planeY₃B₃_smul]
change (planeY₃B₃ R _ _ _).val = (planeY₃B₃ R _ _ _).val
congr 2
ring_nf
lemma lineCube_cube (R : MSSMACC.AnomalyFreePerp) (a₁ a₂ a₃ : ) :
accCube (lineCube R a₁ a₂ a₃).val = 0 := by
change accCube (planeY₃B₃ R _ _ _).val = 0
rw [planeY₃B₃_cubic]
ring_nf
lemma lineCube_quad (R : MSSMACC.AnomalyFreePerp) (a₁ a₂ a₃ : ) :
accQuad (lineCube R a₁ a₂ a₃).val =
3 * (a₁ * cubeTriLin (R.val, R.val, B₃.val) - a₂ * cubeTriLin (R.val, R.val, Y₃.val)) *
(α₁ R * a₁ + α₂ R * a₂ + α₃ R * a₃) := by
erw [planeY₃B₃_quad]
rw [α₁, α₂, α₃]
ring
section proj
lemma α₃_proj (T : MSSMACC.Sols) : α₃ (proj T.1.1) =
6 * dot (Y₃.val, B₃.val) ^ 3 * (
cubeTriLin (T.val, T.val, Y₃.val) * quadBiLin (B₃.val, T.val) -
cubeTriLin (T.val, T.val, B₃.val) * quadBiLin (Y₃.val, T.val)) := by
rw [α₃]
rw [cube_proj_proj_Y₃, cube_proj_proj_B₃, quad_B₃_proj, quad_Y₃_proj]
ring
lemma α₂_proj (T : MSSMACC.Sols) : α₂ (proj T.1.1) =
- α₃ (proj T.1.1) * (dot (Y₃.val, T.val) - 2 * dot (B₃.val, T.val)) := by
rw [α₃_proj, α₂]
rw [cube_proj_proj_Y₃, quad_Y₃_proj, quad_proj, cube_proj]
ring
lemma α₁_proj (T : MSSMACC.Sols) : α₁ (proj T.1.1) =
- α₃ (proj T.1.1) * (dot (B₃.val, T.val) - dot (Y₃.val, T.val)) := by
rw [α₃_proj, α₁]
rw [cube_proj_proj_B₃, quad_B₃_proj, quad_proj, cube_proj]
ring
lemma α₁_proj_zero (T : MSSMACC.Sols) (h1 : α₃ (proj T.1.1) = 0) :
α₁ (proj T.1.1) = 0 := by
rw [α₁_proj, h1]
simp
lemma α₂_proj_zero (T : MSSMACC.Sols) (h1 : α₃ (proj T.1.1) = 0) :
α₂ (proj T.1.1) = 0 := by
rw [α₂_proj, h1]
simp
end proj
end MSSMACC

View file

@ -0,0 +1,639 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.MSSMNu.Basic
import HepLean.AnomalyCancellation.MSSMNu.LineY3B3
import HepLean.AnomalyCancellation.MSSMNu.PlaneY3B3Orthog
import Mathlib.Tactic.Polyrith
/-!
# Parameterization of solutions to the MSSM anomaly cancellation equations
This file uses planes through $Y_3$ and $B_3$ to form solutions to the anomaly cancellation
conditions.
Split into four cases:
- The generic case.
- `case₁`: The case when the quadratic and cubic lines agree (if they exist uniquely).
- `case₂`: The case where the plane lies entirely within the quadratic.
- `case₃`: The case where the plane lies entirely within the cubic and quadratic.
# References
The main reference for the material in this file is:
- https://arxiv.org/pdf/2107.07926.pdf
-/
universe v u
namespace MSSMACC
open MSSMCharges
open MSSMACCs
open BigOperators
/-- Given a `R ∈ LinSols` perpendicular to $Y_3$, and $B_3$, a solution to the quadratic. -/
def genericQuad (R : MSSMACC.AnomalyFreePerp) : MSSMACC.QuadSols :=
lineQuad R
(3 * cubeTriLin (R.val, R.val, Y₃.val))
(3 * cubeTriLin (R.val, R.val, B₃.val))
(cubeTriLin (R.val, R.val, R.val))
lemma genericQuad_cube (R : MSSMACC.AnomalyFreePerp) :
accCube (genericQuad R).val = 0 := by
rw [genericQuad]
rw [lineQuad_val]
rw [planeY₃B₃_cubic]
ring
/-- Given a `R ∈ LinSols` perpendicular to $Y_3$, and $B_3$, a element of `Sols`. -/
def generic (R : MSSMACC.AnomalyFreePerp) : MSSMACC.Sols :=
AnomalyFreeMk'' (genericQuad R) (genericQuad_cube R)
lemma generic_eq_planeY₃B₃_on_α (R : MSSMACC.AnomalyFreePerp) :
(generic R).1.1 = planeY₃B₃ R (α₁ R) (α₂ R) (α₃ R) := by
change (planeY₃B₃ _ _ _ _) = _
apply planeY₃B₃_eq
rw [α₁, α₂, α₃]
ring_nf
simp
/-- Case₁ is when the quadratic and cubic lines in the plane agree, which occurs when
`α₁ R = 0`, `α₂ R = 0` and `α₃ R = 0` (if they exist uniquely). -/
def case₁prop (R : MSSMACC.AnomalyFreePerp) : Prop :=
α₁ R = 0 ∧ α₂ R = 0 ∧ α₃ R = 0
/-- Case₂ is defined when the plane lies entirely within the quadratic. -/
def case₂prop (R : MSSMACC.AnomalyFreePerp) : Prop :=
quadBiLin (R.val, R.val) = 0 ∧ quadBiLin (Y₃.val, R.val) = 0 ∧ quadBiLin (B₃.val, R.val) = 0
/-- Case₃ is defined when the plane lies entirely within the quadratic and cubic. -/
def case₃prop (R : MSSMACC.AnomalyFreePerp) : Prop :=
quadBiLin (R.val, R.val) = 0 ∧ quadBiLin (Y₃.val, R.val) = 0 ∧ quadBiLin (B₃.val, R.val) = 0 ∧
cubeTriLin (R.val, R.val, R.val) = 0 ∧ cubeTriLin (R.val, R.val, B₃.val) = 0 ∧
cubeTriLin (R.val, R.val, Y₃.val) = 0
instance (R : MSSMACC.AnomalyFreePerp) : Decidable (case₁prop R) := by
apply And.decidable
instance (R : MSSMACC.AnomalyFreePerp) : Decidable (case₂prop R) := by
apply And.decidable
instance (R : MSSMACC.AnomalyFreePerp) : Decidable (case₃prop R) := by
apply And.decidable
section proj
/-- On elements of `Sols`, `generic (proj _)` is equivalent to multiplying
by `genericProjCoeff`. -/
def genericProjCoeff (T : MSSMACC.Sols) : :=
dot (Y₃.val, B₃.val) * α₃ (proj T.1.1)
lemma generic_proj (T : MSSMACC.Sols) :
generic (proj T.1.1) = (genericProjCoeff T) • T := by
apply ACCSystem.Sols.ext
erw [generic_eq_planeY₃B₃_on_α]
rw [planeY₃B₃_val]
rw [Y₃_plus_B₃_plus_proj]
rw [α₁_proj, α₂_proj]
simp
rfl
lemma genericProjCoeff_ne_zero (T : MSSMACC.Sols) (hT : genericProjCoeff T ≠ 0 ) :
(genericProjCoeff T)⁻¹ • generic (proj T.1.1) = T := by
rw [generic_proj, ← MulAction.mul_smul, mul_comm, mul_inv_cancel hT]
simp
lemma genericProjCoeff_zero_α₃ (T : MSSMACC.Sols) (hT : genericProjCoeff T = 0) :
α₃ (proj T.1.1) = 0 := by
rw [genericProjCoeff, mul_eq_zero] at hT
rw [show dot (Y₃.val, B₃.val) = 108 by rfl] at hT
simp at hT
exact hT
lemma genericProjCoeff_zero_α₂ (T : MSSMACC.Sols) (hT : genericProjCoeff T = 0) :
α₂ (proj T.1.1) = 0 := by
rw [α₂_proj, genericProjCoeff_zero_α₃ T hT]
simp
lemma genericProjCoeff_zero_α₁ (T : MSSMACC.Sols) (hT : genericProjCoeff T = 0) :
α₁ (proj T.1.1) = 0 := by
rw [α₁_proj, genericProjCoeff_zero_α₃ T hT]
simp
lemma genericProjCoeff_zero (T : MSSMACC.Sols) :
genericProjCoeff T = 0 ↔ case₁prop (proj T.1.1) := by
apply Iff.intro
intro hT
rw [case₁prop]
rw [genericProjCoeff_zero_α₁ T hT, genericProjCoeff_zero_α₂ T hT, genericProjCoeff_zero_α₃ T hT]
simp only [and_self]
intro h
rw [case₁prop] at h
rw [genericProjCoeff]
rw [h.2.2]
simp
lemma genericProjCoeff_neq_zero_case₁ (T : MSSMACC.Sols) (hT : genericProjCoeff T ≠ 0) :
¬ case₁prop (proj T.1.1) :=
(genericProjCoeff_zero T).mpr.mt hT
lemma genericProjCoeff_neq_zero_case₂ (T : MSSMACC.Sols) (hT : genericProjCoeff T ≠ 0) :
¬ case₂prop (proj T.1.1) := by
by_contra hn
rw [case₂prop] at hn
rw [genericProjCoeff, α₃] at hT
simp_all
lemma genericProjCoeff_neq_zero_case₃ (T : MSSMACC.Sols) (hT : genericProjCoeff T ≠ 0) :
¬ case₃prop (proj T.1.1) := by
by_contra hn
rw [case₃prop] at hn
rw [genericProjCoeff, α₃] at hT
simp_all
end proj
/-- The case when the quadratic and cubic lines agree (if they exist uniquely). -/
def case₁ (R : MSSMACC.AnomalyFreePerp) (c₁ c₂ c₃ : )
(h : case₁prop R) : MSSMACC.Sols :=
AnomalyFreeMk'' (lineQuad R c₁ c₂ c₃)
(by
rw [lineQuad_cube]
rw [h.1, h.2.1, h.2.2]
simp)
lemma case₁_smul (R : MSSMACC.AnomalyFreePerp) (c₁ c₂ c₃ d : )
(h : case₁prop R) : case₁ R (d * c₁) (d * c₂) (d * c₃) h = d • case₁ R c₁ c₂ c₃ h := by
apply ACCSystem.Sols.ext
change (lineQuad _ _ _ _).val = _
rw [lineQuad_smul]
rfl
section proj
/-- The coefficent which multiplies a solution on passing through `case₁`. -/
def case₁ProjCoeff (T : MSSMACC.Sols) : :=
2 * (quadBiLin (Y₃.val, (proj T.1.1).val) ^ 2 +
quadBiLin (B₃.val, (proj T.1.1).val) ^ 2)
/-- The first parameter in case₁ needed to form an inverse on Proj. -/
def case₁ProjC₁ (T : MSSMACC.Sols) : := (quadBiLin (B₃.val, T.val))
/-- The second parameter in case₁ needed to form an inverse on Proj. -/
def case₁ProjC₂ (T : MSSMACC.Sols) : := (- quadBiLin (Y₃.val, T.val))
/-- The third parameter in case₁ needed to form an inverse on Proj. -/
def case₁ProjC₃ (T : MSSMACC.Sols) : :=
- quadBiLin (B₃.val, T.val) * ( dot (Y₃.val, T.val)- dot (B₃.val, T.val) )
- quadBiLin (Y₃.val, T.val) * ( dot (Y₃.val, T.val) - 2 * dot (B₃.val, T.val) )
lemma case₁_proj (T : MSSMACC.Sols) (h1 : genericProjCoeff T = 0) :
case₁ (proj T.1.1)
(case₁ProjC₁ T)
(case₁ProjC₂ T)
(case₁ProjC₃ T)
((genericProjCoeff_zero T).mp h1)
= (case₁ProjCoeff T) • T := by
apply ACCSystem.Sols.ext
change (lineQuad _ _ _ _).val = _
rw [lineQuad_val]
rw [planeY₃B₃_val]
rw [Y₃_plus_B₃_plus_proj]
rw [case₁ProjCoeff, case₁ProjC₁, case₁ProjC₂, case₁ProjC₃, quad_proj, quad_Y₃_proj, quad_B₃_proj]
ring_nf
simp
rfl
lemma case₁ProjCoeff_ne_zero (T : MSSMACC.Sols) (h1 : genericProjCoeff T = 0)
(hT : case₁ProjCoeff T ≠ 0 ) :
(case₁ProjCoeff T)⁻¹ • case₁ (proj T.1.1)
(case₁ProjC₁ T)
(case₁ProjC₂ T)
(case₁ProjC₃ T)
((genericProjCoeff_zero T).mp h1) = T := by
rw [case₁_proj T h1, ← MulAction.mul_smul, mul_comm, mul_inv_cancel hT]
simp
lemma case₁ProjCoeff_zero_Y₃_B₃ (T : MSSMACC.Sols) (h1 : case₁ProjCoeff T = 0) :
quadBiLin (Y₃.val, (proj T.1.1).val) = 0 ∧
quadBiLin (B₃.val, (proj T.1.1).val) = 0 := by
rw [case₁ProjCoeff, mul_eq_zero] at h1
simp only [OfNat.ofNat_ne_zero, Fin.isValue, Fin.reduceFinMk, false_or] at h1
have h : quadBiLin (Y₃.val, (proj T.1.1).val) ^ 2 = 0 ∧
quadBiLin (B₃.val, (proj T.1.1).val) ^ 2 = 0 :=
(add_eq_zero_iff' (sq_nonneg _) (sq_nonneg _)).mp h1
simp only [ Fin.isValue, Fin.reduceFinMk, ne_eq, OfNat.ofNat_ne_zero,
not_false_eq_true, pow_eq_zero_iff] at h
exact h
lemma case₁ProjCoeff_zero_Y₃ (T : MSSMACC.Sols) (h1 : case₁ProjCoeff T = 0) :
quadBiLin (Y₃.val, (proj T.1.1).val) = 0 :=
(case₁ProjCoeff_zero_Y₃_B₃ T h1).left
lemma case₁ProjCoeff_zero_B₃ (T : MSSMACC.Sols) (h1 : case₁ProjCoeff T = 0) :
quadBiLin (B₃.val, (proj T.1.1).val) = 0 :=
(case₁ProjCoeff_zero_Y₃_B₃ T h1).right
lemma case₁ProjCoeff_zero_T (T : MSSMACC.Sols) (h1 : case₁ProjCoeff T = 0) :
quadBiLin (T.val, (proj T.1.1).val) = 0 := by
have hY3 : quadBiLin (T.val, Y₃.val) = 0 := by
have h11 := case₁ProjCoeff_zero_Y₃ T h1
rw [quad_Y₃_proj] at h11
rw [show dot (Y₃.val, B₃.val) = 108 by rfl] at h11
simp only [ Fin.isValue, Fin.reduceFinMk, mul_eq_zero, OfNat.ofNat_ne_zero,
false_or] at h11
erw [quadBiLin.swap] at h11
exact h11
have hB3 : quadBiLin (T.val, B₃.val) = 0 := by
have h11 := case₁ProjCoeff_zero_B₃ T h1
rw [quad_B₃_proj] at h11
rw [show dot (Y₃.val, B₃.val) = 108 by rfl] at h11
simp only [ Fin.isValue, Fin.reduceFinMk, mul_eq_zero, OfNat.ofNat_ne_zero,
false_or] at h11
erw [quadBiLin.swap] at h11
exact h11
rw [proj_val]
rw [quadBiLin.map_add₂, quadBiLin.map_add₂]
rw [quadBiLin.map_smul₂, quadBiLin.map_smul₂, quadBiLin.map_smul₂]
rw [hY3, hB3]
erw [quadSol T.1]
simp
lemma case₁ProjCoeff_zero_self (T : MSSMACC.Sols) (h1 : case₁ProjCoeff T = 0) :
quadBiLin ((proj T.1.1).val, (proj T.1.1).val) = 0 := by
nth_rewrite 1 [proj_val]
rw [quadBiLin.map_add₁, quadBiLin.map_add₁]
rw [quadBiLin.map_smul₁, quadBiLin.map_smul₁, quadBiLin.map_smul₁]
rw [case₁ProjCoeff_zero_Y₃ T h1, case₁ProjCoeff_zero_B₃ T h1, case₁ProjCoeff_zero_T T h1]
simp
lemma case₁ProjCoeff_zero (T : MSSMACC.Sols) :
case₁ProjCoeff T = 0 ↔ case₂prop (proj T.1.1) := by
apply Iff.intro
intro h1
rw [case₂prop]
rw [case₁ProjCoeff_zero_self T h1, case₁ProjCoeff_zero_Y₃ T h1, case₁ProjCoeff_zero_B₃ T h1]
simp only [and_self]
intro h
rw [case₂prop] at h
rw [case₁ProjCoeff]
rw [h.2.1, h.2.2]
simp
lemma case₁ProjCoeff_ne_zero_case₂ (T : MSSMACC.Sols) (h1 : case₁ProjCoeff T ≠ 0) :
¬ case₂prop (proj T.1.1) :=
(case₁ProjCoeff_zero T).mpr.mt h1
lemma case₁ProjCoeff_ne_zero_case₃ (T : MSSMACC.Sols) (h1 : case₁ProjCoeff T ≠ 0) :
¬ case₃prop (proj T.1.1) := by
by_contra hn
rw [case₃prop] at hn
rw [case₁ProjCoeff] at h1
simp_all
end proj
/-- The case where the plane lies entirely within the quadratic. -/
def case₂ (R : MSSMACC.AnomalyFreePerp) (a₁ a₂ a₃ : )
(h : case₂prop R) : MSSMACC.Sols :=
AnomalyFreeMk' (lineCube R a₁ a₂ a₃)
(by
erw [planeY₃B₃_quad]
rw [h.1, h.2.1, h.2.2]
simp)
(lineCube_cube R a₁ a₂ a₃)
lemma case₂_smul (R : MSSMACC.AnomalyFreePerp) (c₁ c₂ c₃ d : )
(h : case₂prop R) : case₂ R (d * c₁) (d * c₂) (d * c₃) h = d • case₂ R c₁ c₂ c₃ h := by
apply ACCSystem.Sols.ext
change (lineCube _ _ _ _).val = _
rw [lineCube_smul]
rfl
section proj
/-- The coefficent which multiplies a solution on passing through `case₂`. -/
def case₂ProjCoeff (T : MSSMACC.Sols) : :=
3 * dot (Y₃.val, B₃.val) ^ 3 * (cubeTriLin (T.val, T.val, Y₃.val) ^ 2 +
cubeTriLin (T.val, T.val, B₃.val) ^ 2 )
/-- The first parameter in `case₂` needed to form an inverse on `Proj`. -/
def case₂ProjC₁ (T : MSSMACC.Sols) : := cubeTriLin (T.val, T.val, B₃.val)
/-- The second parameter in `case₂` needed to form an inverse on `Proj`. -/
def case₂ProjC₂ (T : MSSMACC.Sols) : := - cubeTriLin (T.val, T.val, Y₃.val)
/-- The third parameter in `case₂` needed to form an inverse on `Proj`. -/
def case₂ProjC₃ (T : MSSMACC.Sols) : :=
(- cubeTriLin (T.val, T.val, B₃.val) * (dot (Y₃.val, T.val) - dot (B₃.val, T.val))
- cubeTriLin (T.val, T.val, Y₃.val) * (dot (Y₃.val, T.val) - 2 * dot (B₃.val, T.val)))
lemma case₂_proj (T : MSSMACC.Sols) (h1 : case₁ProjCoeff T = 0) :
case₂ (proj T.1.1)
(case₂ProjC₁ T)
(case₂ProjC₂ T)
(case₂ProjC₃ T)
((case₁ProjCoeff_zero T).mp h1) = (case₂ProjCoeff T) • T := by
apply ACCSystem.Sols.ext
change (planeY₃B₃ _ _ _ _).val = _
rw [planeY₃B₃_val]
rw [Y₃_plus_B₃_plus_proj]
rw [case₂ProjCoeff, case₂ProjC₁, case₂ProjC₂, case₂ProjC₃, cube_proj, cube_proj_proj_B₃,
cube_proj_proj_Y₃]
ring_nf
simp
rfl
lemma case₂ProjCoeff_ne_zero (T : MSSMACC.Sols) (h1 : case₁ProjCoeff T = 0)
(hT : case₂ProjCoeff T ≠ 0 ) :
(case₂ProjCoeff T)⁻¹ • case₂ (proj T.1.1)
(case₂ProjC₁ T)
(case₂ProjC₂ T)
(case₂ProjC₃ T)
((case₁ProjCoeff_zero T).mp h1) = T := by
rw [case₂_proj T h1, ← MulAction.mul_smul, mul_comm, mul_inv_cancel hT]
simp
lemma case₂ProjCoeff_zero_Y₃_B₃ (T : MSSMACC.Sols) (h1 : case₂ProjCoeff T = 0) :
cubeTriLin ((proj T.1.1).val, (proj T.1.1).val, Y₃.val) = 0 ∧
cubeTriLin ((proj T.1.1).val, (proj T.1.1).val, B₃.val) = 0 := by
rw [case₂ProjCoeff, mul_eq_zero] at h1
rw [show dot (Y₃.val, B₃.val) = 108 by rfl] at h1
simp at h1
have h : cubeTriLin (T.val, T.val, Y₃.val) ^ 2 = 0 ∧
cubeTriLin (T.val, T.val, B₃.val) ^ 2 = 0 :=
(add_eq_zero_iff' (sq_nonneg _) (sq_nonneg _)).mp h1
simp at h
have h1 := cube_proj_proj_B₃ T.1.1
erw [h.2] at h1
have h2 := cube_proj_proj_Y₃ T.1.1
erw [h.1] at h2
simp_all
lemma case₂ProjCoeff_zero_Y₃ (T : MSSMACC.Sols) (h1 : case₂ProjCoeff T = 0) :
cubeTriLin ((proj T.1.1).val, (proj T.1.1).val, Y₃.val) = 0 :=
(case₂ProjCoeff_zero_Y₃_B₃ T h1).left
lemma case₂ProjCoeff_zero_B₃ (T : MSSMACC.Sols) (h1 : case₂ProjCoeff T = 0) :
cubeTriLin ((proj T.1.1).val, (proj T.1.1).val, B₃.val) = 0 :=
(case₂ProjCoeff_zero_Y₃_B₃ T h1).right
lemma case₂ProjCoeff_zero_T (T : MSSMACC.Sols) (h1 : case₂ProjCoeff T = 0) :
cubeTriLin ((proj T.1.1).val, (proj T.1.1).val, T.val) = 0 := by
rw [cube_proj_proj_self]
have hr : cubeTriLin (T.val, T.val, Y₃.val) = 0 := by
have h11 := case₂ProjCoeff_zero_Y₃ T h1
rw [cube_proj_proj_Y₃] at h11
rw [show dot (Y₃.val, B₃.val) = 108 by rfl] at h11
simp at h11
exact h11
have h2 : cubeTriLin (T.val, T.val, B₃.val) = 0 := by
have h11 := case₂ProjCoeff_zero_B₃ T h1
rw [cube_proj_proj_B₃] at h11
rw [show dot (Y₃.val, B₃.val) = 108 by rfl] at h11
simp at h11
exact h11
rw [hr, h2]
simp
lemma case₂ProjCoeff_zero_self (T : MSSMACC.Sols) (h1 : case₂ProjCoeff T = 0) :
cubeTriLin ((proj T.1.1).val, (proj T.1.1).val, (proj T.1.1).val) = 0 := by
nth_rewrite 3 [proj_val]
rw [cubeTriLin.map_add₃, cubeTriLin.map_add₃]
rw [cubeTriLin.map_smul₃, cubeTriLin.map_smul₃, cubeTriLin.map_smul₃]
rw [case₂ProjCoeff_zero_Y₃ T h1, case₂ProjCoeff_zero_B₃ T h1, case₂ProjCoeff_zero_T T h1]
simp
lemma case₂ProjCoeff_zero (T : MSSMACC.Sols) :
(case₁ProjCoeff T = 0 ∧ case₂ProjCoeff T = 0) ↔ case₃prop (proj T.1.1) := by
apply Iff.intro
intro h1
rw [case₃prop]
rw [case₂ProjCoeff_zero_self T h1.2, case₂ProjCoeff_zero_Y₃ T h1.2, case₂ProjCoeff_zero_B₃ T h1.2]
rw [case₁ProjCoeff_zero_self T h1.1, case₁ProjCoeff_zero_Y₃ T h1.1, case₁ProjCoeff_zero_B₃ T h1.1]
simp only [and_self]
intro h
rw [case₃prop] at h
rw [case₁ProjCoeff, case₂ProjCoeff]
simp_all only [ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, add_zero,
mul_zero, mul_eq_zero, pow_eq_zero_iff, false_or, true_and]
erw [show dot (Y₃.val, B₃.val) = 108 by rfl]
simp only [OfNat.ofNat_ne_zero, false_or]
have h1' := cube_proj_proj_B₃ T.1.1
have h2' := cube_proj_proj_Y₃ T.1.1
erw [show dot (Y₃.val, B₃.val) = 108 by rfl] at h1' h2'
simp_all
lemma case₂ProjCoeff_ne_zero_case₃ (T : MSSMACC.Sols) (h1 : case₂ProjCoeff T ≠ 0) :
¬ case₃prop (proj T.1.1) := by
have h1 : ¬ (case₁ProjCoeff T = 0 ∧ case₂ProjCoeff T = 0) := by
simp_all
exact (case₂ProjCoeff_zero T).mpr.mt h1
end proj
/-- The case where the plane lies entirely within the quadratic and cubic. -/
def case₃ (R : MSSMACC.AnomalyFreePerp) (b₁ b₂ b₃ : )
(h₃ : case₃prop R) :
MSSMACC.Sols :=
AnomalyFreeMk' (planeY₃B₃ R b₁ b₂ b₃)
(by
rw [planeY₃B₃_quad]
rw [h₃.1, h₃.2.1, h₃.2.2.1]
simp)
(by
rw [planeY₃B₃_cubic]
rw [h₃.2.2.2.1, h₃.2.2.2.2.1, h₃.2.2.2.2.2]
simp)
lemma case₃_smul (R : MSSMACC.AnomalyFreePerp) (c₁ c₂ c₃ d : )
(h : case₃prop R) : case₃ R (d * c₁) (d * c₂) (d * c₃) h = d • case₃ R c₁ c₂ c₃ h := by
apply ACCSystem.Sols.ext
change (planeY₃B₃ _ _ _ _).val = _
rw [planeY₃B₃_smul]
rfl
section proj
/-- The coefficent which multiplies a solution on passing through `case₃`. -/
def case₃ProjCoeff : := dot (Y₃.val, B₃.val)
/-- The first parameter in `case₃` needed to form an inverse on `Proj`. -/
def case₃ProjC₁ (T : MSSMACC.Sols) : := (dot (Y₃.val, T.val) - dot (B₃.val, T.val))
/-- The second parameter in `case₃` needed to form an inverse on `Proj`. -/
def case₃ProjC₂ (T : MSSMACC.Sols) : := (2 * dot (B₃.val, T.val) - dot (Y₃.val, T.val))
lemma case₃_proj (T : MSSMACC.Sols) (h0 : case₁ProjCoeff T = 0) (h1 : case₂ProjCoeff T = 0) :
case₃ (proj T.1.1)
(case₃ProjC₁ T)
(case₃ProjC₂ T)
1
((case₂ProjCoeff_zero T).mp (And.intro h0 h1)) = case₃ProjCoeff • T := by
apply ACCSystem.Sols.ext
change (planeY₃B₃ _ _ _ _).val = _
rw [planeY₃B₃_val]
rw [Y₃_plus_B₃_plus_proj]
rw [case₃ProjC₁, case₃ProjC₂]
ring_nf
simp
rfl
lemma case₃_smul_coeff (T : MSSMACC.Sols) (h0 : case₁ProjCoeff T = 0) (h1 : case₂ProjCoeff T = 0) :
case₃ProjCoeff⁻¹ • case₃ (proj T.1.1)
(case₃ProjC₁ T)
(case₃ProjC₂ T)
1
((case₂ProjCoeff_zero T).mp (And.intro h0 h1)) = T := by
rw [case₃_proj T h0 h1]
rw [← MulAction.mul_smul, mul_comm, mul_inv_cancel]
simp only [one_smul]
rw [case₃ProjCoeff]
rw [show dot (Y₃.val, B₃.val) = 108 by rfl]
simp only [ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true]
end proj
/-- A map from `MSSMACC.AnomalyFreePerp × × × ` to `MSSMACC.Sols`.
This allows generation of solutions given elements of `MSSMACC.AnomalyFreePerp` and
three rational numbers. -/
def parameterization :
MSSMACC.AnomalyFreePerp × × × → MSSMACC.Sols := fun A =>
if h₃ : case₃prop A.1 then
case₃ A.1 A.2.1 A.2.2.1 A.2.2.2 h₃
else
if h₂ : case₂prop A.1 then
case₂ A.1 A.2.1 A.2.2.1 A.2.2.2 h₂
else
if h₁ : case₁prop A.1 then
case₁ A.1 A.2.1 A.2.2.1 A.2.2.2 h₁
else
A.2.1 • generic A.1
lemma parameterization_smul (R : MSSMACC.AnomalyFreePerp) (a b c d : ) :
parameterization (R, d * a, d * b, d * c) = d • parameterization (R, a, b, c) := by
rw [parameterization, parameterization]
by_cases h₃ : case₃prop R
rw [dif_pos h₃, dif_pos h₃]
rw [case₃_smul]
rw [dif_neg h₃, dif_neg h₃]
by_cases h₂ : case₂prop R
rw [dif_pos h₂, dif_pos h₂]
rw [case₂_smul]
rw [dif_neg h₂, dif_neg h₂]
by_cases h₁ : case₁prop R
rw [dif_pos h₁, dif_pos h₁]
rw [case₁_smul]
rw [dif_neg h₁, dif_neg h₁]
rw [mul_smul]
lemma parameterization_not₁₂₃ (R : MSSMACC.AnomalyFreePerp) (a b c : )
(h1 : ¬ case₁prop R) (h2 : ¬ case₂prop R) (h3 : ¬ case₃prop R) :
parameterization (R, a, b, c) = a • generic R := by
rw [parameterization]
rw [dif_neg h3]
rw [dif_neg h2]
rw [dif_neg h1]
lemma parameterization_is₁_not₂₃ (R : MSSMACC.AnomalyFreePerp) (a b c : )
(h1 : case₁prop R) (h2 : ¬ case₂prop R) (h3 : ¬ case₃prop R) :
parameterization (R, a, b, c) = case₁ R a b c h1:= by
rw [parameterization]
rw [dif_neg h3]
rw [dif_neg h2]
rw [dif_pos h1]
lemma parameterization_is₁₂_not₃ (R : MSSMACC.AnomalyFreePerp) (a b c : ) (h2 : case₂prop R)
(h3 : ¬ case₃prop R) : parameterization (R, a, b, c) = case₂ R a b c h2 := by
rw [parameterization]
rw [dif_neg h3]
rw [dif_pos h2]
lemma parameterization_is₃ (R : MSSMACC.AnomalyFreePerp) (a b c : ) (h3 : case₃prop R) :
parameterization (R, a, b, c) = case₃ R a b c h3 := by
rw [parameterization]
rw [dif_pos h3]
/-- A right inverse of `parameterizaiton`. -/
def inverse (R : MSSMACC.Sols) : MSSMACC.AnomalyFreePerp × × × :=
if genericProjCoeff R ≠ 0 then
(proj R.1.1, (genericProjCoeff R)⁻¹, 0, 0)
else
if case₁ProjCoeff R ≠ 0 then
(proj R.1.1, (case₁ProjCoeff R)⁻¹ * case₁ProjC₁ R, (case₁ProjCoeff R)⁻¹ * case₁ProjC₂ R,
(case₁ProjCoeff R)⁻¹ * case₁ProjC₃ R)
else
if case₂ProjCoeff R ≠ 0 then
(proj R.1.1, (case₂ProjCoeff R)⁻¹ * case₂ProjC₁ R, (case₂ProjCoeff R)⁻¹ * case₂ProjC₂ R,
(case₂ProjCoeff R)⁻¹ * case₂ProjC₃ R)
else
(proj R.1.1, (case₃ProjCoeff)⁻¹ * case₃ProjC₁ R, (case₃ProjCoeff)⁻¹ * case₃ProjC₂ R,
(case₃ProjCoeff)⁻¹ * 1)
lemma inverse_generic (R : MSSMACC.Sols) (h : genericProjCoeff R ≠ 0) :
inverse R = (proj R.1.1, (genericProjCoeff R)⁻¹, 0, 0) := by
rw [inverse, if_pos h]
lemma inverse_case₁ (R : MSSMACC.Sols) (h0 : genericProjCoeff R = 0)
(h1 : case₁ProjCoeff R ≠ 0) : inverse R = (proj R.1.1, (case₁ProjCoeff R)⁻¹ * case₁ProjC₁ R,
(case₁ProjCoeff R)⁻¹ * case₁ProjC₂ R, (case₁ProjCoeff R)⁻¹ * case₁ProjC₃ R) := by
rw [inverse]
simp_all
lemma inverse_case₂ (R : MSSMACC.Sols) (h0 : genericProjCoeff R = 0)
(h1 : case₁ProjCoeff R = 0) (h2 : case₂ProjCoeff R ≠ 0) : inverse R = (proj R.1.1,
(case₂ProjCoeff R)⁻¹ * case₂ProjC₁ R,
(case₂ProjCoeff R)⁻¹ * case₂ProjC₂ R, (case₂ProjCoeff R)⁻¹ * case₂ProjC₃ R) := by
rw [inverse]
simp_all
lemma inverse_case₃ (R : MSSMACC.Sols) (h0 : genericProjCoeff R = 0)
(h1 : case₁ProjCoeff R = 0) (h2 : case₂ProjCoeff R = 0) :
inverse R = (proj R.1.1, (case₃ProjCoeff)⁻¹ * case₃ProjC₁ R,
(case₃ProjCoeff)⁻¹ * case₃ProjC₂ R,
(case₃ProjCoeff)⁻¹ * 1) := by
rw [inverse]
simp_all
lemma inverse_parameterization (R : MSSMACC.Sols) :
parameterization (inverse R) = R := by
by_cases h0 : genericProjCoeff R ≠ 0
rw [inverse_generic R h0]
rw [parameterization_not₁₂₃ _ _ _ _ (genericProjCoeff_neq_zero_case₁ R h0)
(genericProjCoeff_neq_zero_case₂ R h0) (genericProjCoeff_neq_zero_case₃ R h0)]
rw [genericProjCoeff_ne_zero R h0]
by_cases h1 : case₁ProjCoeff R ≠ 0
simp at h0
rw [inverse_case₁ R h0 h1]
rw [parameterization_smul]
rw [parameterization_is₁_not₂₃ _ _ _ _ ((genericProjCoeff_zero R).mp h0)
(case₁ProjCoeff_ne_zero_case₂ R h1) (case₁ProjCoeff_ne_zero_case₃ R h1)]
rw [case₁ProjCoeff_ne_zero R h0 h1]
simp at h0 h1
by_cases h2 : case₂ProjCoeff R ≠ 0
rw [inverse_case₂ R h0 h1 h2]
rw [parameterization_smul]
rw [parameterization_is₁₂_not₃ _ _ _ _ ((case₁ProjCoeff_zero R).mp h1)
(case₂ProjCoeff_ne_zero_case₃ R h2)]
rw [case₂ProjCoeff_ne_zero R h1 h2]
simp at h2
rw [inverse_case₃ R h0 h1 h2]
rw [parameterization_smul]
rw [parameterization_is₃ _ _ _ _ ((case₂ProjCoeff_zero R).mp (And.intro h1 h2))]
rw [case₃_smul_coeff R h1 h2]
theorem parameterization_surjective : Function.Surjective parameterization := by
intro T
use inverse T
exact inverse_parameterization T
end MSSMACC

View file

@ -0,0 +1,78 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.MSSMNu.Basic
/-!
# The definition of the solution Y₃ and properties thereof
We define $Y_3$ and show that it is a double point of the cubic.
# References
The main reference for the material in this file is:
- https://arxiv.org/pdf/2107.07926.pdf
-/
universe v u
namespace MSSMACC
open MSSMCharges
open MSSMACCs
open BigOperators
/-- $Y_3$ is the charge which is hypercharge in all families, but with the third
family of the opposite sign. -/
def Y₃AsCharge : MSSMACC.charges := toSpecies.symm
⟨fun s => fun i =>
match s, i with
| 0, 0 => 1
| 0, 1 => 1
| 0, 2 => - 1
| 1, 0 => -4
| 1, 1 => -4
| 1, 2 => 4
| 2, 0 => 2
| 2, 1 => 2
| 2, 2 => - 2
| 3, 0 => -3
| 3, 1 => -3
| 3, 2 => 3
| 4, 0 => 6
| 4, 1 => 6
| 4, 2 => - 6
| 5, 0 => 0
| 5, 1 => 0
| 5, 2 => 0,
fun s =>
match s with
| 0 => -3
| 1 => 3⟩
/-- $Y_3$ as a solution. -/
def Y₃ : MSSMACC.Sols :=
MSSMACC.AnomalyFreeMk Y₃AsCharge (by rfl) (by rfl) (by rfl) (by rfl) (by rfl) (by rfl)
lemma Y₃_val : Y₃.val = Y₃AsCharge := by
rfl
lemma doublePoint_Y₃_Y₃ (R : MSSMACC.LinSols) :
cubeTriLin (Y₃.val, Y₃.val, R.val) = 0 := by
rw [← TriLinearSymm.toFun_eq_coe]
simp only [cubeTriLin, cubeTriLinToFun, MSSMSpecies_numberCharges]
rw [Fin.sum_univ_three]
rw [Y₃_val]
rw [Y₃AsCharge]
repeat rw [toSMSpecies_toSpecies_inv]
rw [Hd_toSpecies_inv, Hu_toSpecies_inv]
simp
have hLin := R.linearSol
simp at hLin
have h3 := hLin 3
simp [Fin.sum_univ_three] at h3
linear_combination 6 * h3
end MSSMACC