refactor: Create Mathematics folder

This commit is contained in:
jstoobysmith 2024-06-26 14:04:18 -04:00
parent d2c89d8cc2
commit 049370513d
5 changed files with 4 additions and 4 deletions

View file

@ -0,0 +1,323 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import Mathlib.Tactic.Polyrith
import Mathlib.Algebra.Module.LinearMap.Basic
import Mathlib.Data.Fintype.BigOperators
/-!
# Linear maps
Some definitions and properties of linear, bilinear, and trilinear maps, along with homogeneous
quadratic and cubic equations.
## TODO
Use definitions in `Mathlib4` for definitions where possible.
In particular a HomogeneousQuadratic should be a map `V →ₗ[] V →ₗ[] ` etc.
-/
/-- The structure defining a homogeneous quadratic equation. -/
@[simp]
def HomogeneousQuadratic (V : Type) [AddCommMonoid V] [Module V] : Type :=
V →ₑ[((fun a => a ^ 2) : )]
namespace HomogeneousQuadratic
variable {V : Type} [AddCommMonoid V] [Module V]
instance instFun : FunLike (HomogeneousQuadratic V) V where
coe f := f.toFun
coe_injective' f g h := by
cases f
cases g
simp_all
lemma map_smul (f : HomogeneousQuadratic V) (a : ) (S : V) : f (a • S) = a ^ 2 * f S :=
f.map_smul' a S
end HomogeneousQuadratic
/-- The structure of a symmetric bilinear function. -/
structure BiLinearSymm (V : Type) [AddCommMonoid V] [Module V] extends V →ₗ[] V →ₗ[] where
swap' : ∀ S T, toFun S T = toFun T S
/-- A symmetric bilinear function. -/
class IsSymmetric {V : Type} [AddCommMonoid V] [Module V] (f : V →ₗ[] V →ₗ[] ) : Prop where
swap : ∀ S T, f S T = f T S
namespace BiLinearSymm
open BigOperators
variable {V : Type} [AddCommMonoid V] [Module V]
instance instFun (V : Type) [AddCommMonoid V] [Module V] :
FunLike (BiLinearSymm V) V (V →ₗ[] ) where
coe f := f.toFun
coe_injective' f g h := by
cases f
cases g
simp_all
/-- The construction of a symmetric bilinear map from `smul` and `map_add` in the first factor,
and swap. -/
@[simps!]
def mk₂ (f : V × V → ) (map_smul : ∀ a S T, f (a • S, T) = a * f (S, T))
(map_add : ∀ S1 S2 T, f (S1 + S2, T) = f (S1, T) + f (S2, T))
(swap : ∀ S T, f (S, T) = f (T, S)) : BiLinearSymm V where
toFun := fun S => {
toFun := fun T => f (S, T)
map_add' := by
intro T1 T2
simp only
rw [swap, map_add]
exact Mathlib.Tactic.LinearCombination.add_pf (swap T1 S) (swap T2 S)
map_smul' :=by
intro a T
simp only [eq_ratCast, Rat.cast_eq_id, id_eq, smul_eq_mul]
rw [swap, map_smul]
exact congrArg (HMul.hMul a) (swap T S)
}
map_smul' := fun a S => LinearMap.ext fun T => map_smul a S T
map_add' := fun S1 S2 => LinearMap.ext fun T => map_add S1 S2 T
swap' := swap
lemma map_smul₁ (f : BiLinearSymm V) (a : ) (S T : V) : f (a • S) T = a * f S T := by
erw [f.map_smul a S]
rfl
lemma swap (f : BiLinearSymm V) (S T : V) : f S T = f T S :=
f.swap' S T
lemma map_smul₂ (f : BiLinearSymm V) (a : ) (S : V) (T : V) : f S (a • T) = a * f S T := by
rw [f.swap, f.map_smul₁, f.swap]
lemma map_add₁ (f : BiLinearSymm V) (S1 S2 T : V) : f (S1 + S2) T = f S1 T + f S2 T := by
erw [f.map_add]
rfl
lemma map_add₂ (f : BiLinearSymm V) (S : V) (T1 T2 : V) :
f S (T1 + T2) = f S T1 + f S T2 := by
rw [f.swap, f.map_add₁, f.swap T1 S, f.swap T2 S]
/-- Fixing the second input vectors, the resulting linear map. -/
def toLinear₁ (f : BiLinearSymm V) (T : V) : V →ₗ[] where
toFun S := f S T
map_add' S1 S2 := map_add₁ f S1 S2 T
map_smul' a S := by
simp only [f.map_smul₁]
rfl
lemma toLinear₁_apply (f : BiLinearSymm V) (S T : V) : f S T = f.toLinear₁ T S := rfl
lemma map_sum₁ {n : } (f : BiLinearSymm V) (S : Fin n → V) (T : V) :
f (∑ i, S i) T = ∑ i, f (S i) T := by
rw [f.toLinear₁_apply]
rw [map_sum]
rfl
lemma map_sum₂ {n : } (f : BiLinearSymm V) (S : Fin n → V) (T : V) :
f T (∑ i, S i) = ∑ i, f T (S i) := by
rw [swap, map_sum₁]
apply Fintype.sum_congr
intro i
rw [swap]
/-- The homogenous quadratic equation obtainable from a bilinear function. -/
@[simps!]
def toHomogeneousQuad {V : Type} [AddCommMonoid V] [Module V]
(τ : BiLinearSymm V) : HomogeneousQuadratic V where
toFun S := τ S S
map_smul' a S := by
simp only
rw [τ.map_smul₁, τ.map_smul₂]
ring_nf
rfl
lemma toHomogeneousQuad_add {V : Type} [AddCommMonoid V] [Module V]
(τ : BiLinearSymm V) (S T : V) :
τ.toHomogeneousQuad (S + T) = τ.toHomogeneousQuad S +
τ.toHomogeneousQuad T + 2 * τ S T := by
simp [toHomogeneousQuad_apply]
rw [τ.map_add₁, τ.map_add₁, τ.swap T S]
ring
end BiLinearSymm
/-- The structure of a homogeneous cubic equation. -/
@[simp]
def HomogeneousCubic (V : Type) [AddCommMonoid V] [Module V] : Type :=
V →ₑ[((fun a => a ^ 3) : )]
namespace HomogeneousCubic
variable {V : Type} [AddCommMonoid V] [Module V]
instance instFun : FunLike (HomogeneousCubic V) V where
coe f := f.toFun
coe_injective' f g h := by
cases f
cases g
simp_all
lemma map_smul (f : HomogeneousCubic V) (a : ) (S : V) : f (a • S) = a ^ 3 * f S :=
f.map_smul' a S
end HomogeneousCubic
/-- The structure of a symmetric trilinear function. -/
structure TriLinearSymm (V : Type) [AddCommMonoid V] [Module V] extends
V →ₗ[] V →ₗ[] V →ₗ[] where
swap₁' : ∀ S T L, toFun S T L = toFun T S L
swap₂' : ∀ S T L, toFun S T L = toFun S L T
namespace TriLinearSymm
open BigOperators
variable {V : Type} [AddCommMonoid V] [Module V]
instance instFun : FunLike (TriLinearSymm V) V (V →ₗ[] V →ₗ[] ) where
coe f := f.toFun
coe_injective' f g h := by
cases f
cases g
simp_all
/-- The construction of a symmetric trilinear map from `smul` and `map_add` in the first factor,
and two swap. -/
@[simps!]
def mk₃ (f : V × V × V→ ) (map_smul : ∀ a S T L, f (a • S, T, L) = a * f (S, T, L))
(map_add : ∀ S1 S2 T L, f (S1 + S2, T, L) = f (S1, T, L) + f (S2, T, L))
(swap₁ : ∀ S T L, f (S, T, L) = f (T, S, L))
(swap₂ : ∀ S T L, f (S, T, L) = f (S, L, T)) : TriLinearSymm V where
toFun := fun S => (BiLinearSymm.mk₂ (fun T => f (S, T))
(by
intro a T L
simp only
rw [swap₁, map_smul, swap₁])
(by
intro S1 S2 T
simp only
rw [swap₁, map_add, swap₁, swap₁ S2 S T])
(by
intro L T
simp only
rw [swap₂])).toLinearMap
map_add' S1 S2 := by
apply LinearMap.ext
intro T
apply LinearMap.ext
intro S
simp [BiLinearSymm.mk₂, map_add]
map_smul' a S := by
apply LinearMap.ext
intro T
apply LinearMap.ext
intro L
simp [BiLinearSymm.mk₂, map_smul]
swap₁' := swap₁
swap₂' := swap₂
lemma swap₁ (f : TriLinearSymm V) (S T L : V) : f S T L = f T S L :=
f.swap₁' S T L
lemma swap₂ (f : TriLinearSymm V) (S T L : V) : f S T L = f S L T :=
f.swap₂' S T L
lemma swap₃ (f : TriLinearSymm V) (S T L : V) : f S T L = f L T S := by
rw [f.swap₁, f.swap₂, f.swap₁]
lemma map_smul₁ (f : TriLinearSymm V) (a : ) (S T L : V) :
f (a • S) T L = a * f S T L := by
erw [f.map_smul a S]
rfl
lemma map_smul₂ (f : TriLinearSymm V) (S : V) (a : ) (T L : V) :
f S (a • T) L = a * f S T L := by
rw [f.swap₁, f.map_smul₁, f.swap₁]
lemma map_smul₃ (f : TriLinearSymm V) (S T : V) (a : ) (L : V) :
f S T (a • L) = a * f S T L := by
rw [f.swap₃, f.map_smul₁, f.swap₃]
lemma map_add₁ (f : TriLinearSymm V) (S1 S2 T L : V) :
f (S1 + S2) T L = f S1 T L + f S2 T L := by
erw [f.map_add]
rfl
lemma map_add₂ (f : TriLinearSymm V) (S T1 T2 L : V) :
f S (T1 + T2) L = f S T1 L + f S T2 L := by
rw [f.swap₁, f.map_add₁, f.swap₁ S T1, f.swap₁ S T2]
lemma map_add₃ (f : TriLinearSymm V) (S T L1 L2 : V) :
f S T (L1 + L2) = f S T L1 + f S T L2 := by
rw [f.swap₃, f.map_add₁, f.swap₃, f.swap₃ L2 T S]
/-- Fixing the second and third input vectors, the resulting linear map. -/
def toLinear₁ (f : TriLinearSymm V) (T L : V) : V →ₗ[] where
toFun S := f S T L
map_add' S1 S2 := by
simp only [f.map_add₁]
map_smul' a S := by
simp only [f.map_smul₁]
rfl
lemma toLinear₁_apply (f : TriLinearSymm V) (S T L : V) : f S T L = f.toLinear₁ T L S := rfl
lemma map_sum₁ {n : } (f : TriLinearSymm V) (S : Fin n → V) (T : V) (L : V) :
f (∑ i, S i) T L = ∑ i, f (S i) T L := by
rw [f.toLinear₁_apply]
rw [map_sum]
rfl
lemma map_sum₂ {n : } (f : TriLinearSymm V) (S : Fin n → V) (T : V) (L : V) :
f T (∑ i, S i) L = ∑ i, f T (S i) L := by
rw [swap₁, map_sum₁]
apply Fintype.sum_congr
intro i
rw [swap₁]
lemma map_sum₃ {n : } (f : TriLinearSymm V) (S : Fin n → V) (T : V) (L : V) :
f T L (∑ i, S i) = ∑ i, f T L (S i) := by
rw [swap₃, map_sum₁]
apply Fintype.sum_congr
intro i
rw [swap₃]
lemma map_sum₁₂₃ {n1 n2 n3 : } (f : TriLinearSymm V) (S : Fin n1 → V)
(T : Fin n2 → V) (L : Fin n3 → V) :
f (∑ i, S i) (∑ i, T i) (∑ i, L i) = ∑ i, ∑ k, ∑ l, f (S i) (T k) (L l) := by
rw [map_sum₁]
apply Fintype.sum_congr
intro i
rw [map_sum₂]
apply Fintype.sum_congr
intro i
rw [map_sum₃]
/-- The homogenous cubic equation obtainable from a symmetric trilinear function. -/
@[simps!]
def toCubic {charges : Type} [AddCommMonoid charges] [Module charges]
(τ : TriLinearSymm charges) : HomogeneousCubic charges where
toFun S := τ S S S
map_smul' a S := by
simp only [smul_eq_mul]
rw [τ.map_smul₁, τ.map_smul₂, τ.map_smul₃]
ring
lemma toCubic_add {charges : Type} [AddCommMonoid charges] [Module charges]
(τ : TriLinearSymm charges) (S T : charges) :
τ.toCubic (S + T) = τ.toCubic S +
τ.toCubic T + 3 * τ S S T + 3 * τ T T S := by
simp only [HomogeneousCubic, toCubic_apply]
rw [τ.map_add₁, τ.map_add₂, τ.map_add₂, τ.map_add₃, τ.map_add₃, τ.map_add₃, τ.map_add₃]
rw [τ.swap₂ S T S, τ.swap₁ T S S, τ.swap₂ S T S, τ.swap₂ T S T, τ.swap₁ S T T, τ.swap₂ T S T]
ring
end TriLinearSymm