Merge pull request #258 from HEPLean/PerturbationTheory
feat: Informal def of Feynman diagram
This commit is contained in:
commit
05228b717e
2 changed files with 48 additions and 2 deletions
|
@ -3,6 +3,7 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Wick.Contract
|
||||
import HepLean.PerturbationTheory.Wick.Species
|
||||
/-!
|
||||
|
||||
|
@ -13,5 +14,50 @@ This file currently contains a lighter implmentation of Feynman digrams than can
|
|||
|
||||
The implmentation here is done in conjunction with Wicks species etc.
|
||||
|
||||
This file is currently a stub.
|
||||
-/
|
||||
/-! TODO: Remove this namespace-/
|
||||
namespace LightFeynman
|
||||
|
||||
informal_definition FeynmanDiagram where
|
||||
math :≈ "
|
||||
Let S be a WickSpecies
|
||||
A Feynman diagram contains the following data:
|
||||
- A type of vertices 𝓥 → S.𝓯 ⊕ S.𝓘.
|
||||
- A type of edges ed : 𝓔 → S.𝓕.
|
||||
- A type of half-edges 𝓱𝓔 with maps `e : 𝓱𝓔 → 𝓔`, `v : 𝓱𝓔 → 𝓥` and `f : 𝓱𝓔 → S.𝓯`
|
||||
Subject to the following conditions:
|
||||
- `𝓱𝓔` is a double cover of `𝓔` through `e`. That is,
|
||||
for each edge `x : 𝓔` there exists an isomorphism between `i : Fin 2 → e⁻¹ 𝓱𝓔 {x}`.
|
||||
- These isomorphisms must satisfy `⟦f(i(0))⟧ = ⟦f(i(1))⟧ = ed(e)` and `f(i(0)) = S.ξ (f(i(1)))`.
|
||||
- For each vertex `ver : 𝓥` there exists an isomorphism between the object (roughly)
|
||||
`(𝓘Fields v).2` and the pullback of `v` along `ver`."
|
||||
deps :≈ [``Wick.Species]
|
||||
|
||||
informal_definition _root_.Wick.Contract.toFeynmanDiagram where
|
||||
math :≈ "The Feynman diagram constructed from a complete Wick contraction."
|
||||
deps :≈ [``TwoComplexScalar.WickContract, ``FeynmanDiagram]
|
||||
|
||||
informal_lemma _root_.Wick.Contract.toFeynmanDiagram_surj where
|
||||
math :≈ "The map from Wick contractions to Feynman diagrams is surjective."
|
||||
physics :≈ "Every Feynman digram corresponds to some Wick contraction."
|
||||
deps :≈ [``TwoComplexScalar.WickContract, ``FeynmanDiagram]
|
||||
|
||||
informal_definition FeynmanDiagram.toSimpleGraph where
|
||||
math :≈ "The simple graph underlying a Feynman diagram."
|
||||
deps :≈ [``FeynmanDiagram]
|
||||
|
||||
informal_definition FeynmanDiagram.IsConnected where
|
||||
math :≈ "A Feynman diagram is connected if its underlying simple graph is connected."
|
||||
deps :≈ [``FeynmanDiagram]
|
||||
|
||||
informal_definition _root_.Wick.Contract.toFeynmanDiagram_isConnected_iff where
|
||||
math :≈ "The Feynman diagram corresponding to a Wick contraction is connected
|
||||
if and only if the Wick contraction is connected."
|
||||
deps :≈ [``TwoComplexScalar.WickContract.IsConnected, ``FeynmanDiagram.IsConnected]
|
||||
|
||||
/-! TODO: Define an equivalence relation on Wick contracts related to the their underlying tensors
|
||||
been equal after permutation. Show that two Wick contractions are equal under this
|
||||
equivalence relation if and only if they have the same Feynman diagram. First step
|
||||
is to turn these statements into appropriate informal lemmas and definitions. -/
|
||||
|
||||
end LightFeynman
|
||||
|
|
|
@ -124,7 +124,7 @@ informal_lemma timeOrder_pair where
|
|||
|
||||
informal_definition WickMap where
|
||||
math :≈ "A linear map `vev` from the Wick algebra `A` to the underlying field such that
|
||||
`vev(...ψd(t)) = 0` and `vev(ψc(t)...) = 0`."
|
||||
`vev(...ψd(t)) = 0` and `vev(ψc(t)...) = 0`."
|
||||
physics :≈ "An abstraction of the notion of a vacuum expectation value, containing
|
||||
the necessary properties for lots of theorems to hold."
|
||||
deps :≈ [``WickAlgebra, ``WickMonomial]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue