refactor: Lint
This commit is contained in:
parent
4054665c38
commit
05903bc440
5 changed files with 42 additions and 46 deletions
|
@ -172,7 +172,7 @@ lemma map_tprod {X Y : OverColor Color} (p : (i : X.left) → (colorToRep (X.hom
|
|||
change (colorFun.map' f).hom ((PiTensorProduct.tprod ℂ) p) = _
|
||||
simp [colorFun.map', mapToLinearEquiv']
|
||||
erw [LinearEquiv.trans_apply]
|
||||
change (PiTensorProduct.congr fun i => colorToRepCongr _)
|
||||
change (PiTensorProduct.congr fun i => colorToRepCongr _)
|
||||
((PiTensorProduct.reindex ℂ (fun x => _) (OverColor.Hom.toEquiv f))
|
||||
((PiTensorProduct.tprod ℂ) p)) = _
|
||||
rw [PiTensorProduct.reindex_tprod, PiTensorProduct.congr_tprod]
|
||||
|
@ -244,8 +244,8 @@ def μModEquiv (X Y : OverColor Color) :
|
|||
(colorFun.obj X ⊗ colorFun.obj Y).V ≃ₗ[ℂ] colorFun.obj (X ⊗ Y) :=
|
||||
HepLean.PiTensorProduct.tmulEquiv ≪≫ₗ PiTensorProduct.congr colorToRepSumEquiv
|
||||
|
||||
lemma μModEquiv_tmul_tprod {X Y : OverColor Color}(p : (i : X.left) → (colorToRep (X.hom i)))
|
||||
(q : (i : Y.left) → (colorToRep (Y.hom i))) :
|
||||
lemma μModEquiv_tmul_tprod {X Y : OverColor Color}(p : (i : X.left) → (colorToRep (X.hom i)))
|
||||
(q : (i : Y.left) → (colorToRep (Y.hom i))) :
|
||||
(μModEquiv X Y) ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q) =
|
||||
(PiTensorProduct.tprod ℂ) fun i =>
|
||||
(colorToRepSumEquiv i) (HepLean.PiTensorProduct.elimPureTensor p q i) := by
|
||||
|
@ -289,8 +289,8 @@ def μ (X Y : OverColor Color) : colorFun.obj X ⊗ colorFun.obj Y ≅ colorFun.
|
|||
hom := (μModEquiv X Y).symm.toLinearMap
|
||||
comm := fun M => by
|
||||
simp [CategoryStruct.comp]
|
||||
erw [LinearEquiv.eq_comp_toLinearMap_symm,LinearMap.comp_assoc ,
|
||||
LinearEquiv.toLinearMap_symm_comp_eq ]
|
||||
erw [LinearEquiv.eq_comp_toLinearMap_symm,LinearMap.comp_assoc,
|
||||
LinearEquiv.toLinearMap_symm_comp_eq]
|
||||
refine HepLean.PiTensorProduct.induction_tmul (fun p q => ?_)
|
||||
simp only [colorFun_obj_V_carrier, OverColor.instMonoidalCategoryStruct_tensorObj_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorObj_hom, Functor.id_obj, CategoryStruct.comp,
|
||||
|
@ -325,8 +325,8 @@ def μ (X Y : OverColor Color) : colorFun.obj X ⊗ colorFun.obj Y ≅ colorFun.
|
|||
LinearEquiv.symm_trans_self, LinearEquiv.refl_toLinearMap, Action.id_hom]
|
||||
rfl
|
||||
|
||||
lemma μ_tmul_tprod {X Y : OverColor Color} (p : (i : X.left) → (colorToRep (X.hom i)))
|
||||
(q : (i : Y.left) → (colorToRep (Y.hom i))) :
|
||||
lemma μ_tmul_tprod {X Y : OverColor Color} (p : (i : X.left) → (colorToRep (X.hom i)))
|
||||
(q : (i : Y.left) → (colorToRep (Y.hom i))) :
|
||||
(μ X Y).hom.hom ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q) =
|
||||
(PiTensorProduct.tprod ℂ) fun i =>
|
||||
(colorToRepSumEquiv i) (HepLean.PiTensorProduct.elimPureTensor p q i) := by
|
||||
|
@ -353,7 +353,7 @@ lemma μ_natural_left {X Y : OverColor Color} (f : X ⟶ Y) (Z : OverColor Color
|
|||
((PiTensorProduct.tprod ℂ) p) ⊗ₜ[ℂ] ((PiTensorProduct.tprod ℂ) q)) := by rfl
|
||||
erw [h1]
|
||||
rw [colorFun.map_tprod]
|
||||
change (μ Y Z).hom.hom (((PiTensorProduct.tprod ℂ) fun i => (colorToRepCongr _)
|
||||
change (μ Y Z).hom.hom (((PiTensorProduct.tprod ℂ) fun i => (colorToRepCongr _)
|
||||
(p ((OverColor.Hom.toEquiv f).symm i))) ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q) = _
|
||||
rw [μ_tmul_tprod]
|
||||
apply congrArg
|
||||
|
@ -363,7 +363,7 @@ lemma μ_natural_left {X Y : OverColor Color} (f : X ⟶ Y) (Z : OverColor Color
|
|||
| Sum.inr i => rfl
|
||||
|
||||
lemma μ_natural_right {X Y : OverColor Color} (X' : OverColor Color) (f : X ⟶ Y) :
|
||||
MonoidalCategory.whiskerLeft (colorFun.obj X') (colorFun.map f) ≫ (μ X' Y).hom =
|
||||
MonoidalCategory.whiskerLeft (colorFun.obj X') (colorFun.map f) ≫ (μ X' Y).hom =
|
||||
(μ X' X).hom ≫ colorFun.map (MonoidalCategory.whiskerLeft X' f) := by
|
||||
ext1
|
||||
refine HepLean.PiTensorProduct.induction_tmul (fun p q => ?_)
|
||||
|
@ -384,7 +384,7 @@ lemma μ_natural_right {X Y : OverColor Color} (X' : OverColor Color) (f : X ⟶
|
|||
erw [h1]
|
||||
rw [map_tprod]
|
||||
change (μ X' Y).hom.hom ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) fun i =>
|
||||
(colorToRepCongr _) (q ((OverColor.Hom.toEquiv f).symm i))) = _
|
||||
(colorToRepCongr _) (q ((OverColor.Hom.toEquiv f).symm i))) = _
|
||||
rw [μ_tmul_tprod]
|
||||
apply congrArg
|
||||
funext i
|
||||
|
@ -410,7 +410,7 @@ lemma associativity (X Y Z : OverColor Color) :
|
|||
(μ X (Y ⊗ Z)).hom.hom ((((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] ((μ Y Z).hom.hom
|
||||
((PiTensorProduct.tprod ℂ) q ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) m)))))
|
||||
rw [μ_tmul_tprod, μ_tmul_tprod]
|
||||
change (colorFun.map (α_ X Y Z).hom).hom ((μ (X ⊗ Y) Z).hom.hom
|
||||
change (colorFun.map (α_ X Y Z).hom).hom ((μ (X ⊗ Y) Z).hom.hom
|
||||
(((PiTensorProduct.tprod ℂ) fun i => (colorToRepSumEquiv i)
|
||||
(HepLean.PiTensorProduct.elimPureTensor p q i)) ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) m)) =
|
||||
(μ X (Y ⊗ Z)).hom.hom ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) fun i =>
|
||||
|
@ -463,7 +463,7 @@ lemma right_unitality (X : OverColor Color) : (MonoidalCategory.rightUnitor (col
|
|||
OverColor.instMonoidalCategoryStruct_tensorUnit_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorObj_hom, Action.instMonoidalCategory_whiskerLeft_hom,
|
||||
LinearMap.coe_comp, Function.comp_apply]
|
||||
change TensorProduct.rid ℂ (colorFun.obj X) ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] x ) =
|
||||
change TensorProduct.rid ℂ (colorFun.obj X) ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] x) =
|
||||
(colorFun.map (ρ_ X).hom).hom ((μ X (𝟙_ (OverColor Color))).hom.hom
|
||||
((((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] ((PiTensorProduct.isEmptyEquiv Empty).symm x)))))
|
||||
simp [PiTensorProduct.isEmptyEquiv]
|
||||
|
@ -477,7 +477,7 @@ lemma right_unitality (X : OverColor Color) : (MonoidalCategory.rightUnitor (col
|
|||
|
||||
end colorFun
|
||||
|
||||
/-- The monoidal functor between `OverColor Color` and `Rep ℂ SL(2, ℂ)` taking a map of colors
|
||||
/-- The monoidal functor between `OverColor Color` and `Rep ℂ SL(2, ℂ)` taking a map of colors
|
||||
to the corresponding tensor product representation. -/
|
||||
def colorFunMon : MonoidalFunctor (OverColor Color) (Rep ℂ SL(2, ℂ)) where
|
||||
toFunctor := colorFun
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue