refactor: Lint
This commit is contained in:
parent
9763e1240b
commit
05b4d134ec
9 changed files with 51 additions and 40 deletions
|
@ -34,7 +34,7 @@ lemma contr_two_two_inner_tprod (c : S.C) (x : S.F.obj (OverColor.mk ![c, c]))
|
|||
CoeSort.coe (S.FD.obj { as := (OverColor.mk ![S.τ c, S.τ c]).hom i }))
|
||||
(hx : x = PiTensorProduct.tprod S.k fx)
|
||||
(hy : y = PiTensorProduct.tprod S.k fy) :
|
||||
{x | μ ν ⊗ y| ν ρ}ᵀ.tensor = (S.F.map (OverColor.mkIso (by
|
||||
{x | μ ν ⊗ y| ν ρ}ᵀ.tensor = (S.F.map (OverColor.mkIso (by
|
||||
funext x
|
||||
fin_cases x <;> rfl)).hom).hom ((OverColor.Discrete.pairIsoSep S.FD).hom.hom
|
||||
(((S.FD.obj (Discrete.mk c)) ◁ (λ_ (S.FD.obj (Discrete.mk (S.τ c)))).hom).hom
|
||||
|
@ -45,13 +45,14 @@ lemma contr_two_two_inner_tprod (c : S.C) (x : S.F.obj (OverColor.mk ![c, c]))
|
|||
((α_ (S.FD.obj (Discrete.mk (c))) (S.FD.obj (Discrete.mk (c)))
|
||||
(S.FD.obj (Discrete.mk (S.τ c)) ⊗ S.FD.obj (Discrete.mk (S.τ c)))).hom.hom
|
||||
(((OverColor.Discrete.pairIsoSep S.FD).inv.hom x ⊗ₜ
|
||||
(OverColor.Discrete.pairIsoSep S.FD).inv.hom y))))))):= by
|
||||
(OverColor.Discrete.pairIsoSep S.FD).inv.hom y))))))) := by
|
||||
subst hx
|
||||
subst hy
|
||||
rw [Discrete.pairIsoSep_inv_tprod S.FD fx, Discrete.pairIsoSep_inv_tprod S.FD fy]
|
||||
change _ = (S.F.map (OverColor.mkIso _).hom).hom ((OverColor.Discrete.pairIsoSep S.FD).hom.hom
|
||||
((fx (0 : Fin 2) ⊗ₜ[S.k] (λ_ (S.FD.obj { as := S.τ c }).V).hom
|
||||
((S.contr.app { as := c }).hom (fx (1 : Fin 2) ⊗ₜ[S.k] fy (0 : Fin 2)) ⊗ₜ[S.k] fy (1 : Fin 2)))))
|
||||
((fx (0 : Fin 2) ⊗ₜ[S.k] (λ_ (S.FD.obj { as := S.τ c }).V).hom
|
||||
((S.contr.app { as := c }).hom (fx (1 : Fin 2)
|
||||
⊗ₜ[S.k] fy (0 : Fin 2)) ⊗ₜ[S.k] fy (1 : Fin 2)))))
|
||||
simp only [F_def, Functor.id_obj, mk_hom, Action.instMonoidalCategory_tensorObj_V,
|
||||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj, Monoidal.tensorUnit_obj,
|
||||
|
@ -86,7 +87,7 @@ lemma contr_two_two_inner_tprod (c : S.C) (x : S.F.obj (OverColor.mk ![c, c]))
|
|||
Functor.id_obj, instMonoidalCategoryStruct_tensorObj_hom, LinearEquiv.ofLinear_apply]
|
||||
rfl
|
||||
/- The tensor. -/
|
||||
· rw (config := { transparency := .instances }) [Discrete.pairIsoSep_tmul,
|
||||
· rw (config := { transparency := .instances }) [Discrete.pairIsoSep_tmul,
|
||||
OverColor.lift.map_tprod]
|
||||
apply congrArg
|
||||
funext k
|
||||
|
@ -97,7 +98,7 @@ lemma contr_two_two_inner_tprod (c : S.C) (x : S.F.obj (OverColor.mk ![c, c]))
|
|||
/-- Expands the inner contraction of two 2-tensors in terms of basic categorical
|
||||
constructions and fields of the tensor species. -/
|
||||
lemma contr_two_two_inner (c : S.C) (x : S.F.obj (OverColor.mk ![c, c]))
|
||||
(y : S.F.obj (OverColor.mk ![(S.τ c), (S.τ c)])):
|
||||
(y : S.F.obj (OverColor.mk ![(S.τ c), (S.τ c)])) :
|
||||
{x | μ ν ⊗ y| ν ρ}ᵀ.tensor = (S.F.map (OverColor.mkIso (by
|
||||
funext x
|
||||
fin_cases x <;> rfl)).hom).hom ((OverColor.Discrete.pairIsoSep S.FD).hom.hom
|
||||
|
@ -109,7 +110,7 @@ lemma contr_two_two_inner (c : S.C) (x : S.F.obj (OverColor.mk ![c, c]))
|
|||
((α_ (S.FD.obj (Discrete.mk (c))) (S.FD.obj (Discrete.mk (c)))
|
||||
(S.FD.obj (Discrete.mk (S.τ c)) ⊗ S.FD.obj (Discrete.mk (S.τ c)))).hom.hom
|
||||
(((OverColor.Discrete.pairIsoSep S.FD).inv.hom x ⊗ₜ
|
||||
(OverColor.Discrete.pairIsoSep S.FD).inv.hom y))))))):= by
|
||||
(OverColor.Discrete.pairIsoSep S.FD).inv.hom y))))))) := by
|
||||
simp only [Nat.reduceAdd, Fin.isValue, contr_tensor, prod_tensor, Functor.id_obj, mk_hom,
|
||||
Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue