feat: More informal lemmas

This commit is contained in:
jstoobysmith 2024-10-30 05:50:35 +00:00
parent 5e1262eda7
commit 05f0992d7b
2 changed files with 47 additions and 12 deletions

View file

@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith Authors: Joseph Tooby-Smith
-/ -/
import HepLean.Tensors.ComplexLorentz.Metrics.Basis import HepLean.Tensors.ComplexLorentz.Metrics.Basis
import HepLean.Tensors.ComplexLorentz.Units.Basic
import HepLean.Tensors.ComplexLorentz.Basis import HepLean.Tensors.ComplexLorentz.Basis
/-! /-!
@ -55,6 +56,46 @@ informal_lemma altRightMetric_antisymm where
math :≈ "The alt-right metric is antisymmetric {εR' | β β' = - εR' | β' β}ᵀ" math :≈ "The alt-right metric is antisymmetric {εR' | β β' = - εR' | β' β}ᵀ"
deps :≈ [``altRightMetric] deps :≈ [``altRightMetric]
/-!
## Contractions with each other
-/
informal_lemma coMetric_contr_contrMetric where
math :≈ "The contraction of the covariant metric with the contravariant metric is the unit
{η' | μ ρ ⊗ η | ρ ν = δ' | μ ν}ᵀ"
deps :≈ [``coMetric, ``contrMetric, ``coContrUnit]
informal_lemma contrMetric_contr_coMetric where
math :≈ "The contraction of the contravariant metric with the covariant metric is the unit
{η | μ ρ ⊗ η' | ρ ν = δ | μ ν}ᵀ"
deps :≈ [``contrMetric, ``coMetric, ``contrCoUnit]
informal_lemma leftMetric_contr_altLeftMetric where
math :≈ "The contraction of the left metric with the alt-left metric is the unit
{εL | α β ⊗ εL' | β γ = δL | α γ}ᵀ"
deps :≈ [``leftMetric, ``altLeftMetric, ``leftAltLeftUnit]
informal_lemma rightMetric_contr_altRightMetric where
math :≈ "The contraction of the right metric with the alt-right metric is the unit
{εR | α β ⊗ εR' | β γ = δR | α γ}ᵀ"
deps :≈ [``rightMetric, ``altRightMetric, ``rightAltRightUnit]
informal_lemma altLeftMetric_contr_leftMetric where
math :≈ "The contraction of the alt-left metric with the left metric is the unit
{εL' | α β ⊗ εL | β γ = δL' | α γ}ᵀ"
deps :≈ [``altLeftMetric, ``leftMetric, ``altLeftLeftUnit]
informal_lemma altRightMetric_contr_rightMetric where
math :≈ "The contraction of the alt-right metric with the right metric is the unit
{εR' | α β ⊗ εR | β γ = δR' | α γ}ᵀ"
deps :≈ [``altRightMetric, ``rightMetric, ``altRightRightUnit]
/-!
## Other relations
-/
/-- The map to color one gets when multiplying left and right metrics. -/ /-- The map to color one gets when multiplying left and right metrics. -/
def leftMetricMulRightMap := (Sum.elim ![Color.upL, Color.upL] ![Color.upR, Color.upR]) ∘ def leftMetricMulRightMap := (Sum.elim ![Color.upL, Color.upL] ![Color.upR, Color.upR]) ∘
finSumFinEquiv.symm finSumFinEquiv.symm

View file

@ -129,38 +129,32 @@ lemma tensorNode_rightAltRightUnit: {δR | μ ν}ᵀ.tensor = (TensorTree.constT
/-- The tensor `coContrUnit` is invariant under the action of `SL(2,)`. -/ /-- The tensor `coContrUnit` is invariant under the action of `SL(2,)`. -/
lemma action_coContrUnit (g : SL(2,)) : {g •ₐ δ' | μ ν}ᵀ.tensor = {δ' | μ ν}ᵀ.tensor := by lemma action_coContrUnit (g : SL(2,)) : {g •ₐ δ' | μ ν}ᵀ.tensor = {δ' | μ ν}ᵀ.tensor := by
rw [tensorNode_coContrUnit, constTwoNodeE] rw [tensorNode_coContrUnit, constTwoNodeE, ← action_constTwoNode _ g]
rw [← action_constTwoNode _ g]
rfl rfl
/-- The tensor `contrCoUnit` is invariant under the action of `SL(2,)`. -/ /-- The tensor `contrCoUnit` is invariant under the action of `SL(2,)`. -/
lemma action_contrCoUnit (g : SL(2,)) : {g •ₐ δ | μ ν}ᵀ.tensor = {δ | μ ν}ᵀ.tensor := by lemma action_contrCoUnit (g : SL(2,)) : {g •ₐ δ | μ ν}ᵀ.tensor = {δ | μ ν}ᵀ.tensor := by
rw [tensorNode_contrCoUnit, constTwoNodeE] rw [tensorNode_contrCoUnit, constTwoNodeE, ← action_constTwoNode _ g]
rw [← action_constTwoNode _ g]
rfl rfl
/-- The tensor `altLeftLeftUnit` is invariant under the action of `SL(2,)`. -/ /-- The tensor `altLeftLeftUnit` is invariant under the action of `SL(2,)`. -/
lemma action_altLeftLeftUnit (g : SL(2,)) : {g •ₐ δL' | μ ν}ᵀ.tensor = {δL' | μ ν}ᵀ.tensor := by lemma action_altLeftLeftUnit (g : SL(2,)) : {g •ₐ δL' | μ ν}ᵀ.tensor = {δL' | μ ν}ᵀ.tensor := by
rw [tensorNode_altLeftLeftUnit, constTwoNodeE] rw [tensorNode_altLeftLeftUnit, constTwoNodeE, ← action_constTwoNode _ g]
rw [← action_constTwoNode _ g]
rfl rfl
/-- The tensor `leftAltLeftUnit` is invariant under the action of `SL(2,)`. -/ /-- The tensor `leftAltLeftUnit` is invariant under the action of `SL(2,)`. -/
lemma action_leftAltLeftUnit (g : SL(2,)) : {g •ₐ δL | μ ν}ᵀ.tensor = {δL | μ ν}ᵀ.tensor := by lemma action_leftAltLeftUnit (g : SL(2,)) : {g •ₐ δL | μ ν}ᵀ.tensor = {δL | μ ν}ᵀ.tensor := by
rw [tensorNode_leftAltLeftUnit, constTwoNodeE] rw [tensorNode_leftAltLeftUnit, constTwoNodeE, ← action_constTwoNode _ g]
rw [← action_constTwoNode _ g]
rfl rfl
/-- The tensor `altRightRightUnit` is invariant under the action of `SL(2,)`. -/ /-- The tensor `altRightRightUnit` is invariant under the action of `SL(2,)`. -/
lemma action_altRightRightUnit (g : SL(2,)) : {g •ₐ δR' | μ ν}ᵀ.tensor = {δR' | μ ν}ᵀ.tensor := by lemma action_altRightRightUnit (g : SL(2,)) : {g •ₐ δR' | μ ν}ᵀ.tensor = {δR' | μ ν}ᵀ.tensor := by
rw [tensorNode_altRightRightUnit, constTwoNodeE] rw [tensorNode_altRightRightUnit, constTwoNodeE, ← action_constTwoNode _ g]
rw [← action_constTwoNode _ g]
rfl rfl
/-- The tensor `rightAltRightUnit` is invariant under the action of `SL(2,)`. -/ /-- The tensor `rightAltRightUnit` is invariant under the action of `SL(2,)`. -/
lemma action_rightAltRightUnit (g : SL(2,)) : {g •ₐ δR | μ ν}ᵀ.tensor = {δR | μ ν}ᵀ.tensor := by lemma action_rightAltRightUnit (g : SL(2,)) : {g •ₐ δR | μ ν}ᵀ.tensor = {δR | μ ν}ᵀ.tensor := by
rw [tensorNode_rightAltRightUnit, constTwoNodeE] rw [tensorNode_rightAltRightUnit, constTwoNodeE, ← action_constTwoNode _ g]
rw [← action_constTwoNode _ g]
rfl rfl
end complexLorentzTensor end complexLorentzTensor