feat: More informal lemmas
This commit is contained in:
parent
5e1262eda7
commit
05f0992d7b
2 changed files with 47 additions and 12 deletions
|
@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.ComplexLorentz.Metrics.Basis
|
||||
import HepLean.Tensors.ComplexLorentz.Units.Basic
|
||||
import HepLean.Tensors.ComplexLorentz.Basis
|
||||
/-!
|
||||
|
||||
|
@ -55,6 +56,46 @@ informal_lemma altRightMetric_antisymm where
|
|||
math :≈ "The alt-right metric is antisymmetric {εR' | β β' = - εR' | β' β}ᵀ"
|
||||
deps :≈ [``altRightMetric]
|
||||
|
||||
/-!
|
||||
|
||||
## Contractions with each other
|
||||
|
||||
-/
|
||||
|
||||
informal_lemma coMetric_contr_contrMetric where
|
||||
math :≈ "The contraction of the covariant metric with the contravariant metric is the unit
|
||||
{η' | μ ρ ⊗ η | ρ ν = δ' | μ ν}ᵀ"
|
||||
deps :≈ [``coMetric, ``contrMetric, ``coContrUnit]
|
||||
|
||||
informal_lemma contrMetric_contr_coMetric where
|
||||
math :≈ "The contraction of the contravariant metric with the covariant metric is the unit
|
||||
{η | μ ρ ⊗ η' | ρ ν = δ | μ ν}ᵀ"
|
||||
deps :≈ [``contrMetric, ``coMetric, ``contrCoUnit]
|
||||
|
||||
informal_lemma leftMetric_contr_altLeftMetric where
|
||||
math :≈ "The contraction of the left metric with the alt-left metric is the unit
|
||||
{εL | α β ⊗ εL' | β γ = δL | α γ}ᵀ"
|
||||
deps :≈ [``leftMetric, ``altLeftMetric, ``leftAltLeftUnit]
|
||||
|
||||
informal_lemma rightMetric_contr_altRightMetric where
|
||||
math :≈ "The contraction of the right metric with the alt-right metric is the unit
|
||||
{εR | α β ⊗ εR' | β γ = δR | α γ}ᵀ"
|
||||
deps :≈ [``rightMetric, ``altRightMetric, ``rightAltRightUnit]
|
||||
|
||||
informal_lemma altLeftMetric_contr_leftMetric where
|
||||
math :≈ "The contraction of the alt-left metric with the left metric is the unit
|
||||
{εL' | α β ⊗ εL | β γ = δL' | α γ}ᵀ"
|
||||
deps :≈ [``altLeftMetric, ``leftMetric, ``altLeftLeftUnit]
|
||||
|
||||
informal_lemma altRightMetric_contr_rightMetric where
|
||||
math :≈ "The contraction of the alt-right metric with the right metric is the unit
|
||||
{εR' | α β ⊗ εR | β γ = δR' | α γ}ᵀ"
|
||||
deps :≈ [``altRightMetric, ``rightMetric, ``altRightRightUnit]
|
||||
/-!
|
||||
|
||||
## Other relations
|
||||
|
||||
-/
|
||||
/-- The map to color one gets when multiplying left and right metrics. -/
|
||||
def leftMetricMulRightMap := (Sum.elim ![Color.upL, Color.upL] ![Color.upR, Color.upR]) ∘
|
||||
finSumFinEquiv.symm
|
||||
|
|
|
@ -129,38 +129,32 @@ lemma tensorNode_rightAltRightUnit: {δR | μ ν}ᵀ.tensor = (TensorTree.constT
|
|||
|
||||
/-- The tensor `coContrUnit` is invariant under the action of `SL(2,ℂ)`. -/
|
||||
lemma action_coContrUnit (g : SL(2,ℂ)) : {g •ₐ δ' | μ ν}ᵀ.tensor = {δ' | μ ν}ᵀ.tensor := by
|
||||
rw [tensorNode_coContrUnit, constTwoNodeE]
|
||||
rw [← action_constTwoNode _ g]
|
||||
rw [tensorNode_coContrUnit, constTwoNodeE, ← action_constTwoNode _ g]
|
||||
rfl
|
||||
|
||||
/-- The tensor `contrCoUnit` is invariant under the action of `SL(2,ℂ)`. -/
|
||||
lemma action_contrCoUnit (g : SL(2,ℂ)) : {g •ₐ δ | μ ν}ᵀ.tensor = {δ | μ ν}ᵀ.tensor := by
|
||||
rw [tensorNode_contrCoUnit, constTwoNodeE]
|
||||
rw [← action_constTwoNode _ g]
|
||||
rw [tensorNode_contrCoUnit, constTwoNodeE, ← action_constTwoNode _ g]
|
||||
rfl
|
||||
|
||||
/-- The tensor `altLeftLeftUnit` is invariant under the action of `SL(2,ℂ)`. -/
|
||||
lemma action_altLeftLeftUnit (g : SL(2,ℂ)) : {g •ₐ δL' | μ ν}ᵀ.tensor = {δL' | μ ν}ᵀ.tensor := by
|
||||
rw [tensorNode_altLeftLeftUnit, constTwoNodeE]
|
||||
rw [← action_constTwoNode _ g]
|
||||
rw [tensorNode_altLeftLeftUnit, constTwoNodeE, ← action_constTwoNode _ g]
|
||||
rfl
|
||||
|
||||
/-- The tensor `leftAltLeftUnit` is invariant under the action of `SL(2,ℂ)`. -/
|
||||
lemma action_leftAltLeftUnit (g : SL(2,ℂ)) : {g •ₐ δL | μ ν}ᵀ.tensor = {δL | μ ν}ᵀ.tensor := by
|
||||
rw [tensorNode_leftAltLeftUnit, constTwoNodeE]
|
||||
rw [← action_constTwoNode _ g]
|
||||
rw [tensorNode_leftAltLeftUnit, constTwoNodeE, ← action_constTwoNode _ g]
|
||||
rfl
|
||||
|
||||
/-- The tensor `altRightRightUnit` is invariant under the action of `SL(2,ℂ)`. -/
|
||||
lemma action_altRightRightUnit (g : SL(2,ℂ)) : {g •ₐ δR' | μ ν}ᵀ.tensor = {δR' | μ ν}ᵀ.tensor := by
|
||||
rw [tensorNode_altRightRightUnit, constTwoNodeE]
|
||||
rw [← action_constTwoNode _ g]
|
||||
rw [tensorNode_altRightRightUnit, constTwoNodeE, ← action_constTwoNode _ g]
|
||||
rfl
|
||||
|
||||
/-- The tensor `rightAltRightUnit` is invariant under the action of `SL(2,ℂ)`. -/
|
||||
lemma action_rightAltRightUnit (g : SL(2,ℂ)) : {g •ₐ δR | μ ν}ᵀ.tensor = {δR | μ ν}ᵀ.tensor := by
|
||||
rw [tensorNode_rightAltRightUnit, constTwoNodeE]
|
||||
rw [← action_constTwoNode _ g]
|
||||
rw [tensorNode_rightAltRightUnit, constTwoNodeE, ← action_constTwoNode _ g]
|
||||
rfl
|
||||
|
||||
end complexLorentzTensor
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue