feat: Add double empty Lint
This commit is contained in:
parent
e8ce2119c0
commit
0634fac03b
5 changed files with 20 additions and 11 deletions
|
@ -50,7 +50,7 @@ def splitSMPlusH : (Fin 18 ⊕ Fin 2 → ℚ) ≃ (Fin 18 → ℚ) × (Fin 2 →
|
|||
/-- An equivalence between `MSSMCharges.charges` and `(Fin 18 → ℚ) × (Fin 2 → ℚ)`. This
|
||||
splits the charges up into the SM and the additional ones for the MSSM. -/
|
||||
@[simps!]
|
||||
def toSplitSMPlusH : MSSMCharges.Charges ≃ (Fin 18 → ℚ) × (Fin 2 → ℚ) :=
|
||||
def toSplitSMPlusH : MSSMCharges.Charges ≃ (Fin 18 → ℚ) × (Fin 2 → ℚ) :=
|
||||
toSMPlusH.trans splitSMPlusH
|
||||
|
||||
/-- An equivalence between `(Fin 18 → ℚ)` and `(Fin 6 → Fin 3 → ℚ)`. -/
|
||||
|
@ -74,7 +74,7 @@ def toSMSpecies (i : Fin 6) : MSSMCharges.Charges →ₗ[ℚ] MSSMSpecies.Charge
|
|||
map_add' _ _ := by rfl
|
||||
map_smul' _ _ := by rfl
|
||||
|
||||
lemma toSMSpecies_toSpecies_inv (i : Fin 6) (f : (Fin 6 → Fin 3 → ℚ) × (Fin 2 → ℚ)) :
|
||||
lemma toSMSpecies_toSpecies_inv (i : Fin 6) (f : (Fin 6 → Fin 3 → ℚ) × (Fin 2 → ℚ)) :
|
||||
(toSMSpecies i) (toSpecies.symm f) = f.1 i := by
|
||||
change (Prod.fst ∘ toSpecies ∘ toSpecies.symm ) _ i= f.1 i
|
||||
simp
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue