refactor: Rename ofStateList to ofFieldOpListF
This commit is contained in:
parent
b0735a1e13
commit
08260e709c
10 changed files with 126 additions and 126 deletions
|
@ -434,27 +434,27 @@ def ofFieldOp (φ : 𝓕.States) : 𝓕.FieldOpAlgebra := ι (ofState φ)
|
|||
lemma ofFieldOp_eq_ι_ofState (φ : 𝓕.States) : ofFieldOp φ = ι (ofState φ) := rfl
|
||||
|
||||
/-- An element of `FieldOpAlgebra` from a list of `States`. -/
|
||||
def ofFieldOpList (φs : List 𝓕.States) : 𝓕.FieldOpAlgebra := ι (ofStateList φs)
|
||||
def ofFieldOpList (φs : List 𝓕.States) : 𝓕.FieldOpAlgebra := ι (ofFieldOpListF φs)
|
||||
|
||||
lemma ofFieldOpList_eq_ι_ofStateList (φs : List 𝓕.States) :
|
||||
ofFieldOpList φs = ι (ofStateList φs) := rfl
|
||||
lemma ofFieldOpList_eq_ι_ofFieldOpListF (φs : List 𝓕.States) :
|
||||
ofFieldOpList φs = ι (ofFieldOpListF φs) := rfl
|
||||
|
||||
lemma ofFieldOpList_append (φs ψs : List 𝓕.States) :
|
||||
ofFieldOpList (φs ++ ψs) = ofFieldOpList φs * ofFieldOpList ψs := by
|
||||
simp only [ofFieldOpList]
|
||||
rw [ofStateList_append]
|
||||
rw [ofFieldOpListF_append]
|
||||
simp
|
||||
|
||||
lemma ofFieldOpList_cons (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
ofFieldOpList (φ :: φs) = ofFieldOp φ * ofFieldOpList φs := by
|
||||
simp only [ofFieldOpList]
|
||||
rw [ofStateList_cons]
|
||||
rw [ofFieldOpListF_cons]
|
||||
simp only [map_mul]
|
||||
rfl
|
||||
|
||||
lemma ofFieldOpList_singleton (φ : 𝓕.States) :
|
||||
ofFieldOpList [φ] = ofFieldOp φ := by
|
||||
simp only [ofFieldOpList, ofFieldOp, ofStateList_singleton]
|
||||
simp only [ofFieldOpList, ofFieldOp, ofFieldOpListF_singleton]
|
||||
|
||||
/-- An element of `FieldOpAlgebra` from a `CrAnStates`. -/
|
||||
def ofCrAnFieldOp (φ : 𝓕.CrAnStates) : 𝓕.FieldOpAlgebra := ι (ofCrAnState φ)
|
||||
|
@ -486,7 +486,7 @@ lemma ofCrAnFieldOpList_singleton (φ : 𝓕.CrAnStates) :
|
|||
|
||||
lemma ofFieldOpList_eq_sum (φs : List 𝓕.States) :
|
||||
ofFieldOpList φs = ∑ s : CrAnSection φs, ofCrAnFieldOpList s.1 := by
|
||||
rw [ofFieldOpList, ofStateList_sum]
|
||||
rw [ofFieldOpList, ofFieldOpListF_sum]
|
||||
simp only [map_sum]
|
||||
rfl
|
||||
|
||||
|
|
|
@ -409,7 +409,7 @@ lemma anPart_mul_normalOrder_ofFieldOpList_eq_superCommute (φ : 𝓕.States)
|
|||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝(ofFieldOpList φs' * anPart φ) +
|
||||
[anPart φ, 𝓝(ofFieldOpList φs')]ₛ := by
|
||||
rw [anPart, ofFieldOpList, normalOrder_eq_ι_normalOrderF, ← map_mul]
|
||||
rw [anPartF_mul_normalOrderF_ofStateList_eq_superCommuteF]
|
||||
rw [anPartF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF]
|
||||
simp only [instCommGroup.eq_1, map_add, map_smul]
|
||||
rfl
|
||||
|
||||
|
@ -520,7 +520,7 @@ lemma ofFieldOp_mul_normalOrder_ofFieldOpList_eq_superCommute (φ : 𝓕.States)
|
|||
lhs
|
||||
rw [← add_mul, ← ofFieldOp_eq_crPart_add_anPart]
|
||||
|
||||
/-- In the expansion of `ofState φ * normalOrderF (ofStateList φs)` the element
|
||||
/-- In the expansion of `ofState φ * normalOrderF (ofFieldOpListF φs)` the element
|
||||
of `𝓞.A` associated with contracting `φ` with the (optional) `n`th element of `φs`. -/
|
||||
noncomputable def contractStateAtIndex (φ : 𝓕.States) (φs : List 𝓕.States)
|
||||
(n : Option (Fin φs.length)) : 𝓕.FieldOpAlgebra :=
|
||||
|
|
|
@ -23,7 +23,7 @@ namespace FieldOpAlgebra
|
|||
|
||||
lemma static_wick_theorem_nil : ofFieldOpList [] = ∑ (φsΛ : WickContraction [].length),
|
||||
φsΛ.sign (𝓕 := 𝓕) • φsΛ.staticContract * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ) := by
|
||||
simp only [ofFieldOpList, ofStateList_nil, map_one, List.length_nil]
|
||||
simp only [ofFieldOpList, ofFieldOpListF_nil, map_one, List.length_nil]
|
||||
rw [sum_WickContraction_nil, uncontractedListGet, nil_zero_uncontractedList]
|
||||
simp [sign, empty, staticContract]
|
||||
|
||||
|
|
|
@ -238,7 +238,7 @@ lemma superCommute_ofFieldOpList_ofFieldOpList (φs φs' : List 𝓕.States) :
|
|||
[ofFieldOpList φs, ofFieldOpList φs']ₛ = ofFieldOpList φs * ofFieldOpList φs' -
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofFieldOpList φs' * ofFieldOpList φs := by
|
||||
rw [ofFieldOpList, ofFieldOpList]
|
||||
rw [superCommute_eq_ι_superCommuteF, superCommuteF_ofStateList_ofStatesList]
|
||||
rw [superCommute_eq_ι_superCommuteF, superCommuteF_ofFieldOpListF_ofStatesList]
|
||||
rfl
|
||||
|
||||
lemma superCommute_ofFieldOp_ofFieldOpList (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
|
@ -252,7 +252,7 @@ lemma superCommute_ofFieldOpList_ofFieldOp (φs : List 𝓕.States) (φ : 𝓕.S
|
|||
[ofFieldOpList φs, ofFieldOp φ]ₛ = ofFieldOpList φs * ofFieldOp φ -
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofFieldOp φ * ofFieldOpList φs := by
|
||||
rw [ofFieldOpList, ofFieldOp]
|
||||
rw [superCommute_eq_ι_superCommuteF, superCommuteF_ofStateList_ofState]
|
||||
rw [superCommute_eq_ι_superCommuteF, superCommuteF_ofFieldOpListF_ofState]
|
||||
rfl
|
||||
|
||||
lemma superCommute_anPart_crPart (φ φ' : 𝓕.States) :
|
||||
|
@ -329,14 +329,14 @@ lemma superCommute_crPart_ofFieldOpList (φ : 𝓕.States) (φs : List 𝓕.Stat
|
|||
[crPart φ, ofFieldOpList φs]ₛ = crPart φ * ofFieldOpList φs -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofFieldOpList φs * crPart φ := by
|
||||
rw [crPart, ofFieldOpList]
|
||||
rw [superCommute_eq_ι_superCommuteF, superCommuteF_crPartF_ofStateList]
|
||||
rw [superCommute_eq_ι_superCommuteF, superCommuteF_crPartF_ofFieldOpListF]
|
||||
rfl
|
||||
|
||||
lemma superCommute_anPart_ofFieldOpList (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
[anPart φ, ofFieldOpList φs]ₛ = anPart φ * ofFieldOpList φs -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofFieldOpList φs * anPart φ := by
|
||||
rw [anPart, ofFieldOpList]
|
||||
rw [superCommute_eq_ι_superCommuteF, superCommuteF_anPartF_ofStateList]
|
||||
rw [superCommute_eq_ι_superCommuteF, superCommuteF_anPartF_ofFieldOpListF]
|
||||
rfl
|
||||
|
||||
lemma superCommute_crPart_ofFieldOp (φ φ' : 𝓕.States) :
|
||||
|
@ -494,7 +494,7 @@ lemma superCommute_ofCrAnFieldOpList_ofFieldOpList_eq_sum (φs : List 𝓕.CrAnS
|
|||
ofFieldOpList (φs'.drop (n + 1)) := by
|
||||
conv_lhs =>
|
||||
rw [ofCrAnFieldOpList, ofFieldOpList, superCommute_eq_ι_superCommuteF,
|
||||
superCommuteF_ofCrAnList_ofStateList_eq_sum]
|
||||
superCommuteF_ofCrAnList_ofFieldOpListF_eq_sum]
|
||||
rw [map_sum]
|
||||
rfl
|
||||
|
||||
|
|
|
@ -413,13 +413,13 @@ lemma timeOrder_ofFieldOp_ofFieldOp_not_ordered_eq_timeOrder {φ ψ : 𝓕.State
|
|||
rfl
|
||||
|
||||
lemma timeOrder_ofFieldOpList_nil : 𝓣(ofFieldOpList (𝓕 := 𝓕) []) = 1 := by
|
||||
rw [ofFieldOpList, timeOrder_eq_ι_timeOrderF, timeOrderF_ofStateList_nil]
|
||||
rw [ofFieldOpList, timeOrder_eq_ι_timeOrderF, timeOrderF_ofFieldOpListF_nil]
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma timeOrder_ofFieldOpList_singleton (φ : 𝓕.States) :
|
||||
𝓣(ofFieldOpList [φ]) = ofFieldOpList [φ] := by
|
||||
rw [ofFieldOpList, timeOrder_eq_ι_timeOrderF, timeOrderF_ofStateList_singleton]
|
||||
rw [ofFieldOpList, timeOrder_eq_ι_timeOrderF, timeOrderF_ofFieldOpListF_singleton]
|
||||
|
||||
lemma timeOrder_eq_maxTimeField_mul_finset (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
𝓣(ofFieldOpList (φ :: φs)) = 𝓢(𝓕 |>ₛ maxTimeField φ φs, 𝓕 |>ₛ ⟨(eraseMaxTimeField φ φs).get,
|
||||
|
|
|
@ -72,27 +72,27 @@ def ofState (φ : 𝓕.States) : FieldOpFreeAlgebra 𝓕 :=
|
|||
/-- Maps a list of states to the creation and annihilation free-algebra by taking
|
||||
the product of their sums of creation and annihlation operators.
|
||||
Roughly `[φ1, φ2]` gets sent to `(φ1ᶜ+ φ1ᵃ) * (φ2ᶜ+ φ2ᵃ)` etc. -/
|
||||
def ofStateList (φs : List 𝓕.States) : FieldOpFreeAlgebra 𝓕 := (List.map ofState φs).prod
|
||||
def ofFieldOpListF (φs : List 𝓕.States) : FieldOpFreeAlgebra 𝓕 := (List.map ofState φs).prod
|
||||
|
||||
/-- Coercion from `List 𝓕.States` to `FieldOpFreeAlgebra 𝓕` through `ofStateList`. -/
|
||||
instance : Coe (List 𝓕.States) (FieldOpFreeAlgebra 𝓕) := ⟨ofStateList⟩
|
||||
/-- Coercion from `List 𝓕.States` to `FieldOpFreeAlgebra 𝓕` through `ofFieldOpListF`. -/
|
||||
instance : Coe (List 𝓕.States) (FieldOpFreeAlgebra 𝓕) := ⟨ofFieldOpListF⟩
|
||||
|
||||
@[simp]
|
||||
lemma ofStateList_nil : ofStateList ([] : List 𝓕.States) = 1 := rfl
|
||||
lemma ofFieldOpListF_nil : ofFieldOpListF ([] : List 𝓕.States) = 1 := rfl
|
||||
|
||||
lemma ofStateList_cons (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
ofStateList (φ :: φs) = ofState φ * ofStateList φs := rfl
|
||||
lemma ofFieldOpListF_cons (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
ofFieldOpListF (φ :: φs) = ofState φ * ofFieldOpListF φs := rfl
|
||||
|
||||
lemma ofStateList_singleton (φ : 𝓕.States) :
|
||||
ofStateList [φ] = ofState φ := by simp [ofStateList]
|
||||
lemma ofFieldOpListF_singleton (φ : 𝓕.States) :
|
||||
ofFieldOpListF [φ] = ofState φ := by simp [ofFieldOpListF]
|
||||
|
||||
lemma ofStateList_append (φs φs' : List 𝓕.States) :
|
||||
ofStateList (φs ++ φs') = ofStateList φs * ofStateList φs' := by
|
||||
dsimp only [ofStateList]
|
||||
lemma ofFieldOpListF_append (φs φs' : List 𝓕.States) :
|
||||
ofFieldOpListF (φs ++ φs') = ofFieldOpListF φs * ofFieldOpListF φs' := by
|
||||
dsimp only [ofFieldOpListF]
|
||||
rw [List.map_append, List.prod_append]
|
||||
|
||||
lemma ofStateList_sum (φs : List 𝓕.States) :
|
||||
ofStateList φs = ∑ (s : CrAnSection φs), ofCrAnList s.1 := by
|
||||
lemma ofFieldOpListF_sum (φs : List 𝓕.States) :
|
||||
ofFieldOpListF φs = ∑ (s : CrAnSection φs), ofCrAnList s.1 := by
|
||||
induction φs with
|
||||
| nil => simp
|
||||
| cons φ φs ih =>
|
||||
|
@ -101,7 +101,7 @@ lemma ofStateList_sum (φs : List 𝓕.States) :
|
|||
conv_rhs =>
|
||||
enter [2, x]
|
||||
rw [← Finset.mul_sum]
|
||||
rw [← Finset.sum_mul, ofStateList_cons, ← ih]
|
||||
rw [← Finset.sum_mul, ofFieldOpListF_cons, ← ih]
|
||||
rfl
|
||||
|
||||
/-!
|
||||
|
|
|
@ -527,11 +527,11 @@ lemma ofCrAnList_superCommuteF_normalOrderF_ofCrAnList (φs φs' : List 𝓕.CrA
|
|||
simp [normalOrderF_ofCrAnList, map_smul, superCommuteF_ofCrAnList_ofCrAnList, ofCrAnList_append,
|
||||
smul_sub, smul_smul, mul_comm]
|
||||
|
||||
lemma ofCrAnList_superCommuteF_normalOrderF_ofStateList (φs : List 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) : [ofCrAnList φs, 𝓝ᶠ(ofStateList φs')]ₛca =
|
||||
ofCrAnList φs * 𝓝ᶠ(ofStateList φs') -
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofStateList φs') * ofCrAnList φs := by
|
||||
rw [ofStateList_sum, map_sum, Finset.mul_sum, Finset.smul_sum, Finset.sum_mul,
|
||||
lemma ofCrAnList_superCommuteF_normalOrderF_ofFieldOpListF (φs : List 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) : [ofCrAnList φs, 𝓝ᶠ(ofFieldOpListF φs')]ₛca =
|
||||
ofCrAnList φs * 𝓝ᶠ(ofFieldOpListF φs') -
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs') * ofCrAnList φs := by
|
||||
rw [ofFieldOpListF_sum, map_sum, Finset.mul_sum, Finset.smul_sum, Finset.sum_mul,
|
||||
← Finset.sum_sub_distrib, map_sum]
|
||||
congr
|
||||
funext n
|
||||
|
@ -544,29 +544,29 @@ lemma ofCrAnList_superCommuteF_normalOrderF_ofStateList (φs : List 𝓕.CrAnSta
|
|||
|
||||
-/
|
||||
|
||||
lemma ofCrAnList_mul_normalOrderF_ofStateList_eq_superCommuteF (φs : List 𝓕.CrAnStates)
|
||||
lemma ofCrAnList_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φs : List 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) :
|
||||
ofCrAnList φs * 𝓝ᶠ(ofStateList φs') =
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofStateList φs') * ofCrAnList φs
|
||||
+ [ofCrAnList φs, 𝓝ᶠ(ofStateList φs')]ₛca := by
|
||||
simp [ofCrAnList_superCommuteF_normalOrderF_ofStateList]
|
||||
ofCrAnList φs * 𝓝ᶠ(ofFieldOpListF φs') =
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs') * ofCrAnList φs
|
||||
+ [ofCrAnList φs, 𝓝ᶠ(ofFieldOpListF φs')]ₛca := by
|
||||
simp [ofCrAnList_superCommuteF_normalOrderF_ofFieldOpListF]
|
||||
|
||||
lemma ofCrAnState_mul_normalOrderF_ofStateList_eq_superCommuteF (φ : 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) : ofCrAnState φ * 𝓝ᶠ(ofStateList φs') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofStateList φs') * ofCrAnState φ
|
||||
+ [ofCrAnState φ, 𝓝ᶠ(ofStateList φs')]ₛca := by
|
||||
simp [← ofCrAnList_singleton, ofCrAnList_mul_normalOrderF_ofStateList_eq_superCommuteF]
|
||||
lemma ofCrAnState_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) : ofCrAnState φ * 𝓝ᶠ(ofFieldOpListF φs') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs') * ofCrAnState φ
|
||||
+ [ofCrAnState φ, 𝓝ᶠ(ofFieldOpListF φs')]ₛca := by
|
||||
simp [← ofCrAnList_singleton, ofCrAnList_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF]
|
||||
|
||||
lemma anPartF_mul_normalOrderF_ofStateList_eq_superCommuteF (φ : 𝓕.States)
|
||||
lemma anPartF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.States)
|
||||
(φs' : List 𝓕.States) :
|
||||
anPartF φ * 𝓝ᶠ(ofStateList φs') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofStateList φs' * anPartF φ)
|
||||
+ [anPartF φ, 𝓝ᶠ(ofStateList φs')]ₛca := by
|
||||
anPartF φ * 𝓝ᶠ(ofFieldOpListF φs') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs' * anPartF φ)
|
||||
+ [anPartF φ, 𝓝ᶠ(ofFieldOpListF φs')]ₛca := by
|
||||
rw [normalOrderF_mul_anPartF]
|
||||
match φ with
|
||||
| .inAsymp φ => simp
|
||||
| .position φ => simp [ofCrAnState_mul_normalOrderF_ofStateList_eq_superCommuteF, crAnStatistics]
|
||||
| .outAsymp φ => simp [ofCrAnState_mul_normalOrderF_ofStateList_eq_superCommuteF, crAnStatistics]
|
||||
| .position φ => simp [ofCrAnState_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF, crAnStatistics]
|
||||
| .outAsymp φ => simp [ofCrAnState_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF, crAnStatistics]
|
||||
|
||||
end
|
||||
|
||||
|
|
|
@ -58,22 +58,22 @@ lemma superCommuteF_ofCrAnState_ofCrAnState (φ φ' : 𝓕.CrAnStates) :
|
|||
rw [FieldStatistic.ofList_singleton, FieldStatistic.ofList_singleton, smul_mul_assoc]
|
||||
|
||||
lemma superCommuteF_ofCrAnList_ofStatesList (φcas : List 𝓕.CrAnStates) (φs : List 𝓕.States) :
|
||||
[ofCrAnList φcas, ofStateList φs]ₛca = ofCrAnList φcas * ofStateList φs -
|
||||
𝓢(𝓕 |>ₛ φcas, 𝓕 |>ₛ φs) • ofStateList φs * ofCrAnList φcas := by
|
||||
conv_lhs => rw [ofStateList_sum]
|
||||
[ofCrAnList φcas, ofFieldOpListF φs]ₛca = ofCrAnList φcas * ofFieldOpListF φs -
|
||||
𝓢(𝓕 |>ₛ φcas, 𝓕 |>ₛ φs) • ofFieldOpListF φs * ofCrAnList φcas := by
|
||||
conv_lhs => rw [ofFieldOpListF_sum]
|
||||
rw [map_sum]
|
||||
conv_lhs =>
|
||||
enter [2, x]
|
||||
rw [superCommuteF_ofCrAnList_ofCrAnList, CrAnSection.statistics_eq_state_statistics,
|
||||
ofCrAnList_append, ofCrAnList_append]
|
||||
rw [Finset.sum_sub_distrib, ← Finset.mul_sum, ← Finset.smul_sum,
|
||||
← Finset.sum_mul, ← ofStateList_sum]
|
||||
← Finset.sum_mul, ← ofFieldOpListF_sum]
|
||||
simp
|
||||
|
||||
lemma superCommuteF_ofStateList_ofStatesList (φ : List 𝓕.States) (φs : List 𝓕.States) :
|
||||
[ofStateList φ, ofStateList φs]ₛca = ofStateList φ * ofStateList φs -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofStateList φs * ofStateList φ := by
|
||||
conv_lhs => rw [ofStateList_sum]
|
||||
lemma superCommuteF_ofFieldOpListF_ofStatesList (φ : List 𝓕.States) (φs : List 𝓕.States) :
|
||||
[ofFieldOpListF φ, ofFieldOpListF φs]ₛca = ofFieldOpListF φ * ofFieldOpListF φs -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofFieldOpListF φs * ofFieldOpListF φ := by
|
||||
conv_lhs => rw [ofFieldOpListF_sum]
|
||||
simp only [map_sum, LinearMap.coeFn_sum, Finset.sum_apply, instCommGroup.eq_1,
|
||||
Algebra.smul_mul_assoc]
|
||||
conv_lhs =>
|
||||
|
@ -81,18 +81,18 @@ lemma superCommuteF_ofStateList_ofStatesList (φ : List 𝓕.States) (φs : List
|
|||
rw [superCommuteF_ofCrAnList_ofStatesList]
|
||||
simp only [instCommGroup.eq_1, CrAnSection.statistics_eq_state_statistics,
|
||||
Algebra.smul_mul_assoc, Finset.sum_sub_distrib]
|
||||
rw [← Finset.sum_mul, ← Finset.smul_sum, ← Finset.mul_sum, ← ofStateList_sum]
|
||||
rw [← Finset.sum_mul, ← Finset.smul_sum, ← Finset.mul_sum, ← ofFieldOpListF_sum]
|
||||
|
||||
lemma superCommuteF_ofState_ofStatesList (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
[ofState φ, ofStateList φs]ₛca = ofState φ * ofStateList φs -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofStateList φs * ofState φ := by
|
||||
rw [← ofStateList_singleton, superCommuteF_ofStateList_ofStatesList, ofStateList_singleton]
|
||||
[ofState φ, ofFieldOpListF φs]ₛca = ofState φ * ofFieldOpListF φs -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofFieldOpListF φs * ofState φ := by
|
||||
rw [← ofFieldOpListF_singleton, superCommuteF_ofFieldOpListF_ofStatesList, ofFieldOpListF_singleton]
|
||||
simp
|
||||
|
||||
lemma superCommuteF_ofStateList_ofState (φs : List 𝓕.States) (φ : 𝓕.States) :
|
||||
[ofStateList φs, ofState φ]ₛca = ofStateList φs * ofState φ -
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * ofStateList φs := by
|
||||
rw [← ofStateList_singleton, superCommuteF_ofStateList_ofStatesList, ofStateList_singleton]
|
||||
lemma superCommuteF_ofFieldOpListF_ofState (φs : List 𝓕.States) (φ : 𝓕.States) :
|
||||
[ofFieldOpListF φs, ofState φ]ₛca = ofFieldOpListF φs * ofState φ -
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * ofFieldOpListF φs := by
|
||||
rw [← ofFieldOpListF_singleton, superCommuteF_ofFieldOpListF_ofStatesList, ofFieldOpListF_singleton]
|
||||
simp
|
||||
|
||||
lemma superCommuteF_anPartF_crPartF (φ φ' : 𝓕.States) :
|
||||
|
@ -202,9 +202,9 @@ lemma superCommuteF_anPartF_anPartF (φ φ' : 𝓕.States) :
|
|||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
|
||||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
|
||||
lemma superCommuteF_crPartF_ofStateList (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
[crPartF φ, ofStateList φs]ₛca =
|
||||
crPartF φ * ofStateList φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofStateList φs *
|
||||
lemma superCommuteF_crPartF_ofFieldOpListF (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
[crPartF φ, ofFieldOpListF φs]ₛca =
|
||||
crPartF φ * ofFieldOpListF φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofFieldOpListF φs *
|
||||
crPartF φ := by
|
||||
match φ with
|
||||
| States.inAsymp φ =>
|
||||
|
@ -218,10 +218,10 @@ lemma superCommuteF_crPartF_ofStateList (φ : 𝓕.States) (φs : List 𝓕.Stat
|
|||
| States.outAsymp φ =>
|
||||
simp
|
||||
|
||||
lemma superCommuteF_anPartF_ofStateList (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
[anPartF φ, ofStateList φs]ₛca =
|
||||
anPartF φ * ofStateList φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) •
|
||||
ofStateList φs * anPartF φ := by
|
||||
lemma superCommuteF_anPartF_ofFieldOpListF (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
[anPartF φ, ofFieldOpListF φs]ₛca =
|
||||
anPartF φ * ofFieldOpListF φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) •
|
||||
ofFieldOpListF φs * anPartF φ := by
|
||||
match φ with
|
||||
| States.inAsymp φ =>
|
||||
simp
|
||||
|
@ -238,14 +238,14 @@ lemma superCommuteF_crPartF_ofState (φ φ' : 𝓕.States) :
|
|||
[crPartF φ, ofState φ']ₛca =
|
||||
crPartF φ * ofState φ' -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofState φ' * crPartF φ := by
|
||||
rw [← ofStateList_singleton, superCommuteF_crPartF_ofStateList]
|
||||
rw [← ofFieldOpListF_singleton, superCommuteF_crPartF_ofFieldOpListF]
|
||||
simp
|
||||
|
||||
lemma superCommuteF_anPartF_ofState (φ φ' : 𝓕.States) :
|
||||
[anPartF φ, ofState φ']ₛca =
|
||||
anPartF φ * ofState φ' -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofState φ' * anPartF φ := by
|
||||
rw [← ofStateList_singleton, superCommuteF_anPartF_ofStateList]
|
||||
rw [← ofFieldOpListF_singleton, superCommuteF_anPartF_ofFieldOpListF]
|
||||
simp
|
||||
|
||||
/-!
|
||||
|
@ -268,22 +268,22 @@ lemma ofCrAnState_mul_ofCrAnList_eq_superCommuteF (φ : 𝓕.CrAnStates) (φs' :
|
|||
rw [← ofCrAnList_singleton, ofCrAnList_mul_ofCrAnList_eq_superCommuteF]
|
||||
simp
|
||||
|
||||
lemma ofStateList_mul_ofStateList_eq_superCommuteF (φs φs' : List 𝓕.States) :
|
||||
ofStateList φs * ofStateList φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofStateList φs' * ofStateList φs
|
||||
+ [ofStateList φs, ofStateList φs']ₛca := by
|
||||
rw [superCommuteF_ofStateList_ofStatesList]
|
||||
lemma ofFieldOpListF_mul_ofFieldOpListF_eq_superCommuteF (φs φs' : List 𝓕.States) :
|
||||
ofFieldOpListF φs * ofFieldOpListF φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofFieldOpListF φs' * ofFieldOpListF φs
|
||||
+ [ofFieldOpListF φs, ofFieldOpListF φs']ₛca := by
|
||||
rw [superCommuteF_ofFieldOpListF_ofStatesList]
|
||||
simp
|
||||
|
||||
lemma ofState_mul_ofStateList_eq_superCommuteF (φ : 𝓕.States) (φs' : List 𝓕.States) :
|
||||
ofState φ * ofStateList φs' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • ofStateList φs' * ofState φ
|
||||
+ [ofState φ, ofStateList φs']ₛca := by
|
||||
lemma ofState_mul_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.States) (φs' : List 𝓕.States) :
|
||||
ofState φ * ofFieldOpListF φs' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • ofFieldOpListF φs' * ofState φ
|
||||
+ [ofState φ, ofFieldOpListF φs']ₛca := by
|
||||
rw [superCommuteF_ofState_ofStatesList]
|
||||
simp
|
||||
|
||||
lemma ofStateList_mul_ofState_eq_superCommuteF (φs : List 𝓕.States) (φ : 𝓕.States) :
|
||||
ofStateList φs * ofState φ = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * ofStateList φs
|
||||
+ [ofStateList φs, ofState φ]ₛca := by
|
||||
rw [superCommuteF_ofStateList_ofState]
|
||||
lemma ofFieldOpListF_mul_ofState_eq_superCommuteF (φs : List 𝓕.States) (φ : 𝓕.States) :
|
||||
ofFieldOpListF φs * ofState φ = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * ofFieldOpListF φs
|
||||
+ [ofFieldOpListF φs, ofState φ]ₛca := by
|
||||
rw [superCommuteF_ofFieldOpListF_ofState]
|
||||
simp
|
||||
|
||||
lemma crPartF_mul_anPartF_eq_superCommuteF (φ φ' : 𝓕.States) :
|
||||
|
@ -314,9 +314,9 @@ lemma anPartF_mul_anPartF_eq_superCommuteF (φ φ' : 𝓕.States) :
|
|||
rw [superCommuteF_anPartF_anPartF]
|
||||
simp
|
||||
|
||||
lemma ofCrAnList_mul_ofStateList_eq_superCommuteF (φs : List 𝓕.CrAnStates) (φs' : List 𝓕.States) :
|
||||
ofCrAnList φs * ofStateList φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofStateList φs' * ofCrAnList φs
|
||||
+ [ofCrAnList φs, ofStateList φs']ₛca := by
|
||||
lemma ofCrAnList_mul_ofFieldOpListF_eq_superCommuteF (φs : List 𝓕.CrAnStates) (φs' : List 𝓕.States) :
|
||||
ofCrAnList φs * ofFieldOpListF φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofFieldOpListF φs' * ofCrAnList φs
|
||||
+ [ofCrAnList φs, ofFieldOpListF φs']ₛca := by
|
||||
rw [superCommuteF_ofCrAnList_ofStatesList]
|
||||
simp
|
||||
|
||||
|
@ -377,24 +377,24 @@ lemma superCommuteF_ofCrAnList_ofCrAnList_cons (φ : 𝓕.CrAnStates) (φs φs'
|
|||
rw [← ofCrAnList_cons, smul_smul, FieldStatistic.ofList_cons_eq_mul]
|
||||
simp only [instCommGroup, map_mul, mul_comm]
|
||||
|
||||
lemma superCommuteF_ofCrAnList_ofStateList_cons (φ : 𝓕.States) (φs : List 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) : [ofCrAnList φs, ofStateList (φ :: φs')]ₛca =
|
||||
[ofCrAnList φs, ofState φ]ₛca * ofStateList φs' +
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * [ofCrAnList φs, ofStateList φs']ₛca := by
|
||||
lemma superCommuteF_ofCrAnList_ofFieldOpListF_cons (φ : 𝓕.States) (φs : List 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) : [ofCrAnList φs, ofFieldOpListF (φ :: φs')]ₛca =
|
||||
[ofCrAnList φs, ofState φ]ₛca * ofFieldOpListF φs' +
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * [ofCrAnList φs, ofFieldOpListF φs']ₛca := by
|
||||
rw [superCommuteF_ofCrAnList_ofStatesList]
|
||||
conv_rhs =>
|
||||
lhs
|
||||
rw [← ofStateList_singleton, superCommuteF_ofCrAnList_ofStatesList, sub_mul, mul_assoc,
|
||||
← ofStateList_append]
|
||||
rw [← ofFieldOpListF_singleton, superCommuteF_ofCrAnList_ofStatesList, sub_mul, mul_assoc,
|
||||
← ofFieldOpListF_append]
|
||||
rhs
|
||||
rw [FieldStatistic.ofList_singleton, ofStateList_singleton, smul_mul_assoc,
|
||||
rw [FieldStatistic.ofList_singleton, ofFieldOpListF_singleton, smul_mul_assoc,
|
||||
smul_mul_assoc, mul_assoc]
|
||||
conv_rhs =>
|
||||
rhs
|
||||
rw [superCommuteF_ofCrAnList_ofStatesList, mul_sub, smul_mul_assoc]
|
||||
simp only [instCommGroup, Algebra.smul_mul_assoc, List.singleton_append, Algebra.mul_smul_comm,
|
||||
sub_add_sub_cancel, sub_right_inj]
|
||||
rw [ofStateList_cons, mul_assoc, smul_smul, FieldStatistic.ofList_cons_eq_mul]
|
||||
rw [ofFieldOpListF_cons, mul_assoc, smul_smul, FieldStatistic.ofList_cons_eq_mul]
|
||||
simp [mul_comm]
|
||||
|
||||
/--
|
||||
|
@ -417,23 +417,23 @@ lemma superCommuteF_ofCrAnList_ofCrAnList_eq_sum (φs : List 𝓕.CrAnStates) :
|
|||
· simp [Finset.mul_sum, smul_smul, ofCrAnList_cons, mul_assoc,
|
||||
FieldStatistic.ofList_cons_eq_mul, mul_comm]
|
||||
|
||||
lemma superCommuteF_ofCrAnList_ofStateList_eq_sum (φs : List 𝓕.CrAnStates) : (φs' : List 𝓕.States) →
|
||||
[ofCrAnList φs, ofStateList φs']ₛca =
|
||||
lemma superCommuteF_ofCrAnList_ofFieldOpListF_eq_sum (φs : List 𝓕.CrAnStates) : (φs' : List 𝓕.States) →
|
||||
[ofCrAnList φs, ofFieldOpListF φs']ₛca =
|
||||
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs'.take n) •
|
||||
ofStateList (φs'.take n) * [ofCrAnList φs, ofState (φs'.get n)]ₛca *
|
||||
ofStateList (φs'.drop (n + 1))
|
||||
ofFieldOpListF (φs'.take n) * [ofCrAnList φs, ofState (φs'.get n)]ₛca *
|
||||
ofFieldOpListF (φs'.drop (n + 1))
|
||||
| [] => by
|
||||
simp only [superCommuteF_ofCrAnList_ofStatesList, instCommGroup, ofList_empty,
|
||||
exchangeSign_bosonic, one_smul, List.length_nil, Finset.univ_eq_empty, List.take_nil,
|
||||
List.get_eq_getElem, List.drop_nil, Finset.sum_empty]
|
||||
simp
|
||||
| φ :: φs' => by
|
||||
rw [superCommuteF_ofCrAnList_ofStateList_cons,
|
||||
superCommuteF_ofCrAnList_ofStateList_eq_sum φs φs']
|
||||
rw [superCommuteF_ofCrAnList_ofFieldOpListF_cons,
|
||||
superCommuteF_ofCrAnList_ofFieldOpListF_eq_sum φs φs']
|
||||
conv_rhs => erw [Fin.sum_univ_succ]
|
||||
congr 1
|
||||
· simp
|
||||
· simp [Finset.mul_sum, smul_smul, ofStateList_cons, mul_assoc,
|
||||
· simp [Finset.mul_sum, smul_smul, ofFieldOpListF_cons, mul_assoc,
|
||||
FieldStatistic.ofList_cons_eq_mul, mul_comm]
|
||||
|
||||
lemma summerCommute_jacobi_ofCrAnList (φs1 φs2 φs3 : List 𝓕.CrAnStates) :
|
||||
|
|
|
@ -99,41 +99,41 @@ lemma timeOrderF_timeOrderF_left (a b : 𝓕.FieldOpFreeAlgebra) : 𝓣ᶠ(a * b
|
|||
· rw [timeOrderF_timeOrderF_mid]
|
||||
simp
|
||||
|
||||
lemma timeOrderF_ofStateList (φs : List 𝓕.States) :
|
||||
𝓣ᶠ(ofStateList φs) = timeOrderSign φs • ofStateList (timeOrderList φs) := by
|
||||
lemma timeOrderF_ofFieldOpListF (φs : List 𝓕.States) :
|
||||
𝓣ᶠ(ofFieldOpListF φs) = timeOrderSign φs • ofFieldOpListF (timeOrderList φs) := by
|
||||
conv_lhs =>
|
||||
rw [ofStateList_sum, map_sum]
|
||||
rw [ofFieldOpListF_sum, map_sum]
|
||||
enter [2, x]
|
||||
rw [timeOrderF_ofCrAnList]
|
||||
simp only [crAnTimeOrderSign_crAnSection]
|
||||
rw [← Finset.smul_sum]
|
||||
congr
|
||||
rw [ofStateList_sum, sum_crAnSections_timeOrder]
|
||||
rw [ofFieldOpListF_sum, sum_crAnSections_timeOrder]
|
||||
rfl
|
||||
|
||||
lemma timeOrderF_ofStateList_nil : timeOrderF (𝓕 := 𝓕) (ofStateList []) = 1 := by
|
||||
rw [timeOrderF_ofStateList]
|
||||
lemma timeOrderF_ofFieldOpListF_nil : timeOrderF (𝓕 := 𝓕) (ofFieldOpListF []) = 1 := by
|
||||
rw [timeOrderF_ofFieldOpListF]
|
||||
simp [timeOrderSign, Wick.koszulSign, timeOrderList]
|
||||
|
||||
@[simp]
|
||||
lemma timeOrderF_ofStateList_singleton (φ : 𝓕.States) : 𝓣ᶠ(ofStateList [φ]) = ofStateList [φ] := by
|
||||
simp [timeOrderF_ofStateList, timeOrderSign, timeOrderList]
|
||||
lemma timeOrderF_ofFieldOpListF_singleton (φ : 𝓕.States) : 𝓣ᶠ(ofFieldOpListF [φ]) = ofFieldOpListF [φ] := by
|
||||
simp [timeOrderF_ofFieldOpListF, timeOrderSign, timeOrderList]
|
||||
|
||||
lemma timeOrderF_ofState_ofState_ordered {φ ψ : 𝓕.States} (h : timeOrderRel φ ψ) :
|
||||
𝓣ᶠ(ofState φ * ofState ψ) = ofState φ * ofState ψ := by
|
||||
rw [← ofStateList_singleton, ← ofStateList_singleton, ← ofStateList_append,
|
||||
timeOrderF_ofStateList]
|
||||
rw [← ofFieldOpListF_singleton, ← ofFieldOpListF_singleton, ← ofFieldOpListF_append,
|
||||
timeOrderF_ofFieldOpListF]
|
||||
simp only [List.singleton_append]
|
||||
rw [timeOrderSign_pair_ordered h, timeOrderList_pair_ordered h]
|
||||
simp
|
||||
|
||||
lemma timeOrderF_ofState_ofState_not_ordered {φ ψ : 𝓕.States} (h : ¬ timeOrderRel φ ψ) :
|
||||
𝓣ᶠ(ofState φ * ofState ψ) = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) • ofState ψ * ofState φ := by
|
||||
rw [← ofStateList_singleton, ← ofStateList_singleton,
|
||||
← ofStateList_append, timeOrderF_ofStateList]
|
||||
rw [← ofFieldOpListF_singleton, ← ofFieldOpListF_singleton,
|
||||
← ofFieldOpListF_append, timeOrderF_ofFieldOpListF]
|
||||
simp only [List.singleton_append, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [timeOrderSign_pair_not_ordered h, timeOrderList_pair_not_ordered h]
|
||||
simp [← ofStateList_append]
|
||||
simp [← ofFieldOpListF_append]
|
||||
|
||||
lemma timeOrderF_ofState_ofState_not_ordered_eq_timeOrderF {φ ψ : 𝓕.States}
|
||||
(h : ¬ timeOrderRel φ ψ) :
|
||||
|
@ -298,11 +298,11 @@ lemma timeOrderF_superCommuteF_ofCrAnState_ofCrAnState_eq_time
|
|||
where `φᵢ` is the state
|
||||
which has maximum time and `s` is the exchange sign of `φᵢ` and `φ₀φ₁…φᵢ₋₁`. -/
|
||||
lemma timeOrderF_eq_maxTimeField_mul (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
𝓣ᶠ(ofStateList (φ :: φs)) =
|
||||
𝓣ᶠ(ofFieldOpListF (φ :: φs)) =
|
||||
𝓢(𝓕 |>ₛ maxTimeField φ φs, 𝓕 |>ₛ (φ :: φs).take (maxTimeFieldPos φ φs)) •
|
||||
ofState (maxTimeField φ φs) * 𝓣ᶠ(ofStateList (eraseMaxTimeField φ φs)) := by
|
||||
rw [timeOrderF_ofStateList, timeOrderList_eq_maxTimeField_timeOrderList]
|
||||
rw [ofStateList_cons, timeOrderF_ofStateList]
|
||||
ofState (maxTimeField φ φs) * 𝓣ᶠ(ofFieldOpListF (eraseMaxTimeField φ φs)) := by
|
||||
rw [timeOrderF_ofFieldOpListF, timeOrderList_eq_maxTimeField_timeOrderList]
|
||||
rw [ofFieldOpListF_cons, timeOrderF_ofFieldOpListF]
|
||||
simp only [instCommGroup.eq_1, Algebra.mul_smul_comm, Algebra.smul_mul_assoc, smul_smul]
|
||||
congr
|
||||
rw [timerOrderSign_of_eraseMaxTimeField, mul_assoc]
|
||||
|
@ -313,10 +313,10 @@ lemma timeOrderF_eq_maxTimeField_mul (φ : 𝓕.States) (φs : List 𝓕.States)
|
|||
which has maximum time and `s` is the exchange sign of `φᵢ` and `φ₀φ₁…φᵢ₋₁`.
|
||||
Here `s` is written using finite sets. -/
|
||||
lemma timeOrderF_eq_maxTimeField_mul_finset (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
𝓣ᶠ(ofStateList (φ :: φs)) = 𝓢(𝓕 |>ₛ maxTimeField φ φs, 𝓕 |>ₛ ⟨(eraseMaxTimeField φ φs).get,
|
||||
𝓣ᶠ(ofFieldOpListF (φ :: φs)) = 𝓢(𝓕 |>ₛ maxTimeField φ φs, 𝓕 |>ₛ ⟨(eraseMaxTimeField φ φs).get,
|
||||
(Finset.filter (fun x =>
|
||||
(maxTimeFieldPosFin φ φs).succAbove x < maxTimeFieldPosFin φ φs) Finset.univ)⟩) •
|
||||
ofState (maxTimeField φ φs) * 𝓣ᶠ(ofStateList (eraseMaxTimeField φ φs)) := by
|
||||
ofState (maxTimeField φ φs) * 𝓣ᶠ(ofFieldOpListF (eraseMaxTimeField φ φs)) := by
|
||||
rw [timeOrderF_eq_maxTimeField_mul]
|
||||
congr 3
|
||||
apply FieldStatistic.ofList_perm
|
||||
|
|
|
@ -22,7 +22,7 @@ That is to say, the states underlying `ψs` are the states in `φs`.
|
|||
We denote these sections as `CrAnSection φs`.
|
||||
|
||||
Looking forward the main consequence of this definition is the lemma
|
||||
`FieldSpecification.FieldOpFreeAlgebra.ofStateList_sum`.
|
||||
`FieldSpecification.FieldOpFreeAlgebra.ofFieldOpListF_sum`.
|
||||
|
||||
In this module we define various properties of `CrAnSection`.
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue