refactor: Rename ofStateList to ofFieldOpListF
This commit is contained in:
parent
b0735a1e13
commit
08260e709c
10 changed files with 126 additions and 126 deletions
|
@ -527,11 +527,11 @@ lemma ofCrAnList_superCommuteF_normalOrderF_ofCrAnList (φs φs' : List 𝓕.CrA
|
|||
simp [normalOrderF_ofCrAnList, map_smul, superCommuteF_ofCrAnList_ofCrAnList, ofCrAnList_append,
|
||||
smul_sub, smul_smul, mul_comm]
|
||||
|
||||
lemma ofCrAnList_superCommuteF_normalOrderF_ofStateList (φs : List 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) : [ofCrAnList φs, 𝓝ᶠ(ofStateList φs')]ₛca =
|
||||
ofCrAnList φs * 𝓝ᶠ(ofStateList φs') -
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofStateList φs') * ofCrAnList φs := by
|
||||
rw [ofStateList_sum, map_sum, Finset.mul_sum, Finset.smul_sum, Finset.sum_mul,
|
||||
lemma ofCrAnList_superCommuteF_normalOrderF_ofFieldOpListF (φs : List 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) : [ofCrAnList φs, 𝓝ᶠ(ofFieldOpListF φs')]ₛca =
|
||||
ofCrAnList φs * 𝓝ᶠ(ofFieldOpListF φs') -
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs') * ofCrAnList φs := by
|
||||
rw [ofFieldOpListF_sum, map_sum, Finset.mul_sum, Finset.smul_sum, Finset.sum_mul,
|
||||
← Finset.sum_sub_distrib, map_sum]
|
||||
congr
|
||||
funext n
|
||||
|
@ -544,29 +544,29 @@ lemma ofCrAnList_superCommuteF_normalOrderF_ofStateList (φs : List 𝓕.CrAnSta
|
|||
|
||||
-/
|
||||
|
||||
lemma ofCrAnList_mul_normalOrderF_ofStateList_eq_superCommuteF (φs : List 𝓕.CrAnStates)
|
||||
lemma ofCrAnList_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φs : List 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) :
|
||||
ofCrAnList φs * 𝓝ᶠ(ofStateList φs') =
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofStateList φs') * ofCrAnList φs
|
||||
+ [ofCrAnList φs, 𝓝ᶠ(ofStateList φs')]ₛca := by
|
||||
simp [ofCrAnList_superCommuteF_normalOrderF_ofStateList]
|
||||
ofCrAnList φs * 𝓝ᶠ(ofFieldOpListF φs') =
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs') * ofCrAnList φs
|
||||
+ [ofCrAnList φs, 𝓝ᶠ(ofFieldOpListF φs')]ₛca := by
|
||||
simp [ofCrAnList_superCommuteF_normalOrderF_ofFieldOpListF]
|
||||
|
||||
lemma ofCrAnState_mul_normalOrderF_ofStateList_eq_superCommuteF (φ : 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) : ofCrAnState φ * 𝓝ᶠ(ofStateList φs') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofStateList φs') * ofCrAnState φ
|
||||
+ [ofCrAnState φ, 𝓝ᶠ(ofStateList φs')]ₛca := by
|
||||
simp [← ofCrAnList_singleton, ofCrAnList_mul_normalOrderF_ofStateList_eq_superCommuteF]
|
||||
lemma ofCrAnState_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) : ofCrAnState φ * 𝓝ᶠ(ofFieldOpListF φs') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs') * ofCrAnState φ
|
||||
+ [ofCrAnState φ, 𝓝ᶠ(ofFieldOpListF φs')]ₛca := by
|
||||
simp [← ofCrAnList_singleton, ofCrAnList_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF]
|
||||
|
||||
lemma anPartF_mul_normalOrderF_ofStateList_eq_superCommuteF (φ : 𝓕.States)
|
||||
lemma anPartF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.States)
|
||||
(φs' : List 𝓕.States) :
|
||||
anPartF φ * 𝓝ᶠ(ofStateList φs') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofStateList φs' * anPartF φ)
|
||||
+ [anPartF φ, 𝓝ᶠ(ofStateList φs')]ₛca := by
|
||||
anPartF φ * 𝓝ᶠ(ofFieldOpListF φs') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs' * anPartF φ)
|
||||
+ [anPartF φ, 𝓝ᶠ(ofFieldOpListF φs')]ₛca := by
|
||||
rw [normalOrderF_mul_anPartF]
|
||||
match φ with
|
||||
| .inAsymp φ => simp
|
||||
| .position φ => simp [ofCrAnState_mul_normalOrderF_ofStateList_eq_superCommuteF, crAnStatistics]
|
||||
| .outAsymp φ => simp [ofCrAnState_mul_normalOrderF_ofStateList_eq_superCommuteF, crAnStatistics]
|
||||
| .position φ => simp [ofCrAnState_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF, crAnStatistics]
|
||||
| .outAsymp φ => simp [ofCrAnState_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF, crAnStatistics]
|
||||
|
||||
end
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue