refactor: Rename ofStateList to ofFieldOpListF

This commit is contained in:
jstoobysmith 2025-02-03 11:10:20 +00:00
parent b0735a1e13
commit 08260e709c
10 changed files with 126 additions and 126 deletions

View file

@ -58,22 +58,22 @@ lemma superCommuteF_ofCrAnState_ofCrAnState (φ φ' : 𝓕.CrAnStates) :
rw [FieldStatistic.ofList_singleton, FieldStatistic.ofList_singleton, smul_mul_assoc]
lemma superCommuteF_ofCrAnList_ofStatesList (φcas : List 𝓕.CrAnStates) (φs : List 𝓕.States) :
[ofCrAnList φcas, ofStateList φs]ₛca = ofCrAnList φcas * ofStateList φs -
𝓢(𝓕 |>ₛ φcas, 𝓕 |>ₛ φs) • ofStateList φs * ofCrAnList φcas := by
conv_lhs => rw [ofStateList_sum]
[ofCrAnList φcas, ofFieldOpListF φs]ₛca = ofCrAnList φcas * ofFieldOpListF φs -
𝓢(𝓕 |>ₛ φcas, 𝓕 |>ₛ φs) • ofFieldOpListF φs * ofCrAnList φcas := by
conv_lhs => rw [ofFieldOpListF_sum]
rw [map_sum]
conv_lhs =>
enter [2, x]
rw [superCommuteF_ofCrAnList_ofCrAnList, CrAnSection.statistics_eq_state_statistics,
ofCrAnList_append, ofCrAnList_append]
rw [Finset.sum_sub_distrib, ← Finset.mul_sum, ← Finset.smul_sum,
← Finset.sum_mul, ← ofStateList_sum]
← Finset.sum_mul, ← ofFieldOpListF_sum]
simp
lemma superCommuteF_ofStateList_ofStatesList (φ : List 𝓕.States) (φs : List 𝓕.States) :
[ofStateList φ, ofStateList φs]ₛca = ofStateList φ * ofStateList φs -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofStateList φs * ofStateList φ := by
conv_lhs => rw [ofStateList_sum]
lemma superCommuteF_ofFieldOpListF_ofStatesList (φ : List 𝓕.States) (φs : List 𝓕.States) :
[ofFieldOpListF φ, ofFieldOpListF φs]ₛca = ofFieldOpListF φ * ofFieldOpListF φs -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofFieldOpListF φs * ofFieldOpListF φ := by
conv_lhs => rw [ofFieldOpListF_sum]
simp only [map_sum, LinearMap.coeFn_sum, Finset.sum_apply, instCommGroup.eq_1,
Algebra.smul_mul_assoc]
conv_lhs =>
@ -81,18 +81,18 @@ lemma superCommuteF_ofStateList_ofStatesList (φ : List 𝓕.States) (φs : List
rw [superCommuteF_ofCrAnList_ofStatesList]
simp only [instCommGroup.eq_1, CrAnSection.statistics_eq_state_statistics,
Algebra.smul_mul_assoc, Finset.sum_sub_distrib]
rw [← Finset.sum_mul, ← Finset.smul_sum, ← Finset.mul_sum, ← ofStateList_sum]
rw [← Finset.sum_mul, ← Finset.smul_sum, ← Finset.mul_sum, ← ofFieldOpListF_sum]
lemma superCommuteF_ofState_ofStatesList (φ : 𝓕.States) (φs : List 𝓕.States) :
[ofState φ, ofStateList φs]ₛca = ofState φ * ofStateList φs -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofStateList φs * ofState φ := by
rw [← ofStateList_singleton, superCommuteF_ofStateList_ofStatesList, ofStateList_singleton]
[ofState φ, ofFieldOpListF φs]ₛca = ofState φ * ofFieldOpListF φs -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofFieldOpListF φs * ofState φ := by
rw [← ofFieldOpListF_singleton, superCommuteF_ofFieldOpListF_ofStatesList, ofFieldOpListF_singleton]
simp
lemma superCommuteF_ofStateList_ofState (φs : List 𝓕.States) (φ : 𝓕.States) :
[ofStateList φs, ofState φ]ₛca = ofStateList φs * ofState φ -
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * ofStateList φs := by
rw [← ofStateList_singleton, superCommuteF_ofStateList_ofStatesList, ofStateList_singleton]
lemma superCommuteF_ofFieldOpListF_ofState (φs : List 𝓕.States) (φ : 𝓕.States) :
[ofFieldOpListF φs, ofState φ]ₛca = ofFieldOpListF φs * ofState φ -
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * ofFieldOpListF φs := by
rw [← ofFieldOpListF_singleton, superCommuteF_ofFieldOpListF_ofStatesList, ofFieldOpListF_singleton]
simp
lemma superCommuteF_anPartF_crPartF (φ φ' : 𝓕.States) :
@ -202,9 +202,9 @@ lemma superCommuteF_anPartF_anPartF (φ φ' : 𝓕.States) :
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
lemma superCommuteF_crPartF_ofStateList (φ : 𝓕.States) (φs : List 𝓕.States) :
[crPartF φ, ofStateList φs]ₛca =
crPartF φ * ofStateList φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofStateList φs *
lemma superCommuteF_crPartF_ofFieldOpListF (φ : 𝓕.States) (φs : List 𝓕.States) :
[crPartF φ, ofFieldOpListF φs]ₛca =
crPartF φ * ofFieldOpListF φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofFieldOpListF φs *
crPartF φ := by
match φ with
| States.inAsymp φ =>
@ -218,10 +218,10 @@ lemma superCommuteF_crPartF_ofStateList (φ : 𝓕.States) (φs : List 𝓕.Stat
| States.outAsymp φ =>
simp
lemma superCommuteF_anPartF_ofStateList (φ : 𝓕.States) (φs : List 𝓕.States) :
[anPartF φ, ofStateList φs]ₛca =
anPartF φ * ofStateList φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) •
ofStateList φs * anPartF φ := by
lemma superCommuteF_anPartF_ofFieldOpListF (φ : 𝓕.States) (φs : List 𝓕.States) :
[anPartF φ, ofFieldOpListF φs]ₛca =
anPartF φ * ofFieldOpListF φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) •
ofFieldOpListF φs * anPartF φ := by
match φ with
| States.inAsymp φ =>
simp
@ -238,14 +238,14 @@ lemma superCommuteF_crPartF_ofState (φ φ' : 𝓕.States) :
[crPartF φ, ofState φ']ₛca =
crPartF φ * ofState φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofState φ' * crPartF φ := by
rw [← ofStateList_singleton, superCommuteF_crPartF_ofStateList]
rw [← ofFieldOpListF_singleton, superCommuteF_crPartF_ofFieldOpListF]
simp
lemma superCommuteF_anPartF_ofState (φ φ' : 𝓕.States) :
[anPartF φ, ofState φ']ₛca =
anPartF φ * ofState φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofState φ' * anPartF φ := by
rw [← ofStateList_singleton, superCommuteF_anPartF_ofStateList]
rw [← ofFieldOpListF_singleton, superCommuteF_anPartF_ofFieldOpListF]
simp
/-!
@ -268,22 +268,22 @@ lemma ofCrAnState_mul_ofCrAnList_eq_superCommuteF (φ : 𝓕.CrAnStates) (φs' :
rw [← ofCrAnList_singleton, ofCrAnList_mul_ofCrAnList_eq_superCommuteF]
simp
lemma ofStateList_mul_ofStateList_eq_superCommuteF (φs φs' : List 𝓕.States) :
ofStateList φs * ofStateList φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofStateList φs' * ofStateList φs
+ [ofStateList φs, ofStateList φs']ₛca := by
rw [superCommuteF_ofStateList_ofStatesList]
lemma ofFieldOpListF_mul_ofFieldOpListF_eq_superCommuteF (φs φs' : List 𝓕.States) :
ofFieldOpListF φs * ofFieldOpListF φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofFieldOpListF φs' * ofFieldOpListF φs
+ [ofFieldOpListF φs, ofFieldOpListF φs']ₛca := by
rw [superCommuteF_ofFieldOpListF_ofStatesList]
simp
lemma ofState_mul_ofStateList_eq_superCommuteF (φ : 𝓕.States) (φs' : List 𝓕.States) :
ofState φ * ofStateList φs' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • ofStateList φs' * ofState φ
+ [ofState φ, ofStateList φs']ₛca := by
lemma ofState_mul_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.States) (φs' : List 𝓕.States) :
ofState φ * ofFieldOpListF φs' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • ofFieldOpListF φs' * ofState φ
+ [ofState φ, ofFieldOpListF φs']ₛca := by
rw [superCommuteF_ofState_ofStatesList]
simp
lemma ofStateList_mul_ofState_eq_superCommuteF (φs : List 𝓕.States) (φ : 𝓕.States) :
ofStateList φs * ofState φ = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * ofStateList φs
+ [ofStateList φs, ofState φ]ₛca := by
rw [superCommuteF_ofStateList_ofState]
lemma ofFieldOpListF_mul_ofState_eq_superCommuteF (φs : List 𝓕.States) (φ : 𝓕.States) :
ofFieldOpListF φs * ofState φ = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * ofFieldOpListF φs
+ [ofFieldOpListF φs, ofState φ]ₛca := by
rw [superCommuteF_ofFieldOpListF_ofState]
simp
lemma crPartF_mul_anPartF_eq_superCommuteF (φ φ' : 𝓕.States) :
@ -314,9 +314,9 @@ lemma anPartF_mul_anPartF_eq_superCommuteF (φ φ' : 𝓕.States) :
rw [superCommuteF_anPartF_anPartF]
simp
lemma ofCrAnList_mul_ofStateList_eq_superCommuteF (φs : List 𝓕.CrAnStates) (φs' : List 𝓕.States) :
ofCrAnList φs * ofStateList φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofStateList φs' * ofCrAnList φs
+ [ofCrAnList φs, ofStateList φs']ₛca := by
lemma ofCrAnList_mul_ofFieldOpListF_eq_superCommuteF (φs : List 𝓕.CrAnStates) (φs' : List 𝓕.States) :
ofCrAnList φs * ofFieldOpListF φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofFieldOpListF φs' * ofCrAnList φs
+ [ofCrAnList φs, ofFieldOpListF φs']ₛca := by
rw [superCommuteF_ofCrAnList_ofStatesList]
simp
@ -377,24 +377,24 @@ lemma superCommuteF_ofCrAnList_ofCrAnList_cons (φ : 𝓕.CrAnStates) (φs φs'
rw [← ofCrAnList_cons, smul_smul, FieldStatistic.ofList_cons_eq_mul]
simp only [instCommGroup, map_mul, mul_comm]
lemma superCommuteF_ofCrAnList_ofStateList_cons (φ : 𝓕.States) (φs : List 𝓕.CrAnStates)
(φs' : List 𝓕.States) : [ofCrAnList φs, ofStateList (φ :: φs')]ₛca =
[ofCrAnList φs, ofState φ]ₛca * ofStateList φs' +
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * [ofCrAnList φs, ofStateList φs']ₛca := by
lemma superCommuteF_ofCrAnList_ofFieldOpListF_cons (φ : 𝓕.States) (φs : List 𝓕.CrAnStates)
(φs' : List 𝓕.States) : [ofCrAnList φs, ofFieldOpListF (φ :: φs')]ₛca =
[ofCrAnList φs, ofState φ]ₛca * ofFieldOpListF φs' +
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * [ofCrAnList φs, ofFieldOpListF φs']ₛca := by
rw [superCommuteF_ofCrAnList_ofStatesList]
conv_rhs =>
lhs
rw [← ofStateList_singleton, superCommuteF_ofCrAnList_ofStatesList, sub_mul, mul_assoc,
← ofStateList_append]
rw [← ofFieldOpListF_singleton, superCommuteF_ofCrAnList_ofStatesList, sub_mul, mul_assoc,
← ofFieldOpListF_append]
rhs
rw [FieldStatistic.ofList_singleton, ofStateList_singleton, smul_mul_assoc,
rw [FieldStatistic.ofList_singleton, ofFieldOpListF_singleton, smul_mul_assoc,
smul_mul_assoc, mul_assoc]
conv_rhs =>
rhs
rw [superCommuteF_ofCrAnList_ofStatesList, mul_sub, smul_mul_assoc]
simp only [instCommGroup, Algebra.smul_mul_assoc, List.singleton_append, Algebra.mul_smul_comm,
sub_add_sub_cancel, sub_right_inj]
rw [ofStateList_cons, mul_assoc, smul_smul, FieldStatistic.ofList_cons_eq_mul]
rw [ofFieldOpListF_cons, mul_assoc, smul_smul, FieldStatistic.ofList_cons_eq_mul]
simp [mul_comm]
/--
@ -417,23 +417,23 @@ lemma superCommuteF_ofCrAnList_ofCrAnList_eq_sum (φs : List 𝓕.CrAnStates) :
· simp [Finset.mul_sum, smul_smul, ofCrAnList_cons, mul_assoc,
FieldStatistic.ofList_cons_eq_mul, mul_comm]
lemma superCommuteF_ofCrAnList_ofStateList_eq_sum (φs : List 𝓕.CrAnStates) : (φs' : List 𝓕.States) →
[ofCrAnList φs, ofStateList φs']ₛca =
lemma superCommuteF_ofCrAnList_ofFieldOpListF_eq_sum (φs : List 𝓕.CrAnStates) : (φs' : List 𝓕.States) →
[ofCrAnList φs, ofFieldOpListF φs']ₛca =
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs'.take n) •
ofStateList (φs'.take n) * [ofCrAnList φs, ofState (φs'.get n)]ₛca *
ofStateList (φs'.drop (n + 1))
ofFieldOpListF (φs'.take n) * [ofCrAnList φs, ofState (φs'.get n)]ₛca *
ofFieldOpListF (φs'.drop (n + 1))
| [] => by
simp only [superCommuteF_ofCrAnList_ofStatesList, instCommGroup, ofList_empty,
exchangeSign_bosonic, one_smul, List.length_nil, Finset.univ_eq_empty, List.take_nil,
List.get_eq_getElem, List.drop_nil, Finset.sum_empty]
simp
| φ :: φs' => by
rw [superCommuteF_ofCrAnList_ofStateList_cons,
superCommuteF_ofCrAnList_ofStateList_eq_sum φs φs']
rw [superCommuteF_ofCrAnList_ofFieldOpListF_cons,
superCommuteF_ofCrAnList_ofFieldOpListF_eq_sum φs φs']
conv_rhs => erw [Fin.sum_univ_succ]
congr 1
· simp
· simp [Finset.mul_sum, smul_smul, ofStateList_cons, mul_assoc,
· simp [Finset.mul_sum, smul_smul, ofFieldOpListF_cons, mul_assoc,
FieldStatistic.ofList_cons_eq_mul, mul_comm]
lemma summerCommute_jacobi_ofCrAnList (φs1 φs2 φs3 : List 𝓕.CrAnStates) :