refactor: split into two files

This commit is contained in:
jstoobysmith 2024-05-03 06:12:59 -04:00
parent d92e632cfb
commit 0b5c1a4944
2 changed files with 54 additions and 8 deletions

View file

@ -0,0 +1,26 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import Mathlib.Data.Complex.Exponential
import Mathlib.Geometry.Manifold.VectorBundle.Basic
import Mathlib.Geometry.Manifold.VectorBundle.SmoothSection
import Mathlib.Geometry.Manifold.Instances.Real
import Mathlib.RepresentationTheory.Basic
universe v u
namespace StandardModel
open Manifold
open Matrix
open Complex
open ComplexConjugate
/-- The space-time (TODO: Change to Minkowski.) -/
abbrev spaceTime := EuclideanSpace (Fin 4)
abbrev guageGroup : Type := specialUnitaryGroup (Fin 2) × unitary
end StandardModel

View file

@ -3,6 +3,7 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.StandardModel.Basic
import Mathlib.Data.Complex.Exponential
import Mathlib.Geometry.Manifold.VectorBundle.Basic
import Mathlib.Geometry.Manifold.VectorBundle.SmoothSection
@ -16,28 +17,22 @@ This file defines the basic properties for the higgs field in the standard model
-/
universe v u
namespace StandardModel
noncomputable section
open Manifold
open Matrix
open Complex
open ComplexConjugate
/-- The space-time (TODO: Change to Minkowski. Move.) -/
abbrev spaceTime := EuclideanSpace (Fin 4)
abbrev guageGroup : Type := specialUnitaryGroup (Fin 2) × unitary
/-- The trivial vector bundle 𝓡² × ℂ². (TODO: Make associated bundle.) -/
abbrev higgsBundle := Bundle.Trivial spaceTime (Fin 2 → )
instance : SmoothVectorBundle (Fin 2 → ) higgsBundle (𝓡 4) :=
Bundle.Trivial.smoothVectorBundle (Fin 2 → ) 𝓘(, spaceTime)
/-- A higgs field is a smooth section of the higgs bundle. -/
abbrev higgsFields : Type := SmoothSection (𝓡 4) (Fin 2 → ) higgsBundle
/-- -/
@[simps!]
noncomputable def higgsRepMap (g : guageGroup) : (Fin 2 → ) →ₗ[] (Fin 2 → ) where
toFun S := (g.2 ^ 3) • (g.1.1 *ᵥ S)
@ -101,6 +96,31 @@ lemma isConst_iff_exists_const (Φ : higgsFields) : Φ.isConst ↔ ∃ φ, Φ =
subst hφ
rfl
end higgsFields
-- rename
def rotateMatrix (φ : Fin 2 → ) : Matrix (Fin 2) (Fin 2) :=
![![conj φ 0 / √(normSq (φ 0) + normSq (φ 1)), conj φ 1 / √(normSq (φ 0) + normSq (φ 1))],
![ - φ 1/ √(normSq (φ 0) + normSq (φ 1)), φ 0 / √(normSq (φ 0) + normSq (φ 1))]]
lemma rotateMatrix_det {φ : Fin 2 → } (hφ : φ ≠ 0) :
det (rotateMatrix φ) = 1 := by
simp [rotateMatrix, det_fin_two]
simp [div_mul_div_comm]
rw [← normSq_eq_conj_mul_self, ← normSq_eq_conj_mul_self]
rw [div_sub_div_same]
simp
have h1 : 0 ≤ (normSq (φ 0)) + (normSq (φ 1)) :=
add_nonneg (normSq_nonneg _) (normSq_nonneg _)
rw [← ofReal_mul]
rw [Real.mul_self_sqrt h1, ofReal_add]
refine div_self ?_
sorry
theorem higgs_rotate (φ : Fin 2 → ) : ∃ (g : guageGroup) (v : ),
(higgsRep g) φ = ![(v : ), 0] := by
sorry
end higgsFields
end
end StandardModel