From 0bb8a97d53d46d052a8d8093f3aa7819e7ece436 Mon Sep 17 00:00:00 2001 From: jstoobysmith <72603918+jstoobysmith@users.noreply.github.com> Date: Tue, 7 May 2024 08:50:08 -0400 Subject: [PATCH] refactor: higgs fields --- HepLean/StandardModel/HiggsField.lean | 483 ++++++++++++-------------- 1 file changed, 223 insertions(+), 260 deletions(-) diff --git a/HepLean/StandardModel/HiggsField.lean b/HepLean/StandardModel/HiggsField.lean index b5f7fae..f4c845c 100644 --- a/HepLean/StandardModel/HiggsField.lean +++ b/HepLean/StandardModel/HiggsField.lean @@ -93,6 +93,184 @@ noncomputable def higgsRep : Representation ℂ guageGroup higgsVec where rw [one_pow, Matrix.one_mulVec] simp only [one_smul, LinearMap.one_apply] +namespace higgsVec + +/-- Given a vector `ℂ²` the constant higgs field with value equal to that +section. -/ +noncomputable def toField (φ : higgsVec) : higgsField where + toFun := fun _ => φ + contMDiff_toFun := by + intro x + rw [Bundle.contMDiffAt_section] + exact smoothAt_const + +/-- The higgs potential for `higgsVec`, i.e. for constant higgs fields. -/ +def potential (μSq lambda : ℝ) (φ : higgsVec) : ℝ := - μSq * ‖φ‖ ^ 2 + + lambda * ‖φ‖ ^ 4 + +lemma potential_snd_term_nonneg {lambda : ℝ} (hLam : 0 < lambda) (φ : higgsVec) : + 0 ≤ lambda * ‖φ‖ ^ 4 := by + rw [mul_nonneg_iff] + apply Or.inl + simp_all only [ge_iff_le, norm_nonneg, pow_nonneg, and_true] + exact le_of_lt hLam + +lemma potential_as_quad (μSq lambda : ℝ) (φ : higgsVec) : + lambda * ‖φ‖ ^ 2 * ‖φ‖ ^ 2 + (- μSq ) * ‖φ‖ ^ 2 + (- potential μSq lambda φ ) = 0 := by + simp [potential] + ring + +lemma zero_le_potential_discrim (μSq lambda : ℝ) (φ : higgsVec) (hLam : 0 < lambda) : + 0 ≤ discrim (lambda ) (- μSq ) (- potential μSq lambda φ) := by + have h1 := potential_as_quad μSq lambda φ + rw [quadratic_eq_zero_iff_discrim_eq_sq] at h1 + rw [h1] + exact sq_nonneg (2 * (lambda ) * ‖φ‖ ^ 2 + -μSq) + simp only [ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false] + exact ne_of_gt hLam + + +lemma potential_eq_zero_sol (μSq lambda : ℝ) (hLam : 0 < lambda)(φ : higgsVec) + (hV : potential μSq lambda φ = 0) : φ = 0 ∨ ‖φ‖ ^ 2 = μSq / lambda := by + have h1 := potential_as_quad μSq lambda φ + rw [hV] at h1 + have h2 : ‖φ‖ ^ 2 * (lambda * ‖φ‖ ^ 2 + -μSq ) = 0 := by + linear_combination h1 + simp at h2 + cases' h2 with h2 h2 + simp_all + apply Or.inr + field_simp at h2 ⊢ + ring_nf + linear_combination h2 + +lemma potential_eq_zero_sol_of_μSq_nonpos {μSq lambda : ℝ} (hLam : 0 < lambda) (hμSq : μSq ≤ 0) + (φ : higgsVec) (hV : potential μSq lambda φ = 0) : φ = 0 := by + cases' (potential_eq_zero_sol μSq lambda hLam φ hV) with h1 h1 + exact h1 + by_cases hμSqZ : μSq = 0 + simpa [hμSqZ] using h1 + refine ((?_ : ¬ 0 ≤ μSq / lambda) (?_)).elim + · simp_all [div_nonneg_iff] + intro h + exact lt_imp_lt_of_le_imp_le (fun _ => h) (lt_of_le_of_ne hμSq hμSqZ) + · rw [← h1] + exact sq_nonneg ‖φ‖ + +lemma potential_bounded_below (μSq lambda : ℝ) (hLam : 0 < lambda) (φ : higgsVec) : + - μSq ^ 2 / (4 * lambda) ≤ potential μSq lambda φ := by + have h1 := zero_le_potential_discrim μSq lambda φ hLam + simp [discrim] at h1 + ring_nf at h1 + rw [← neg_le_iff_add_nonneg'] at h1 + have h3 : lambda * potential μSq lambda φ * 4 = (4 * lambda) * potential μSq lambda φ := by + ring + rw [h3] at h1 + have h2 := (div_le_iff' (by simp [hLam] : 0 < 4 * lambda )).mpr h1 + ring_nf at h2 ⊢ + exact h2 + +lemma potential_bounded_below_of_μSq_nonpos {μSq lambda : ℝ} (hLam : 0 < lambda) + (hμSq : μSq ≤ 0) (φ : higgsVec) : 0 ≤ potential μSq lambda φ := by + simp only [potential, neg_mul, add_zero] + refine add_nonneg ?_ (potential_snd_term_nonneg hLam φ) + field_simp + rw [@mul_nonpos_iff] + simp_all only [ge_iff_le, norm_nonneg, pow_nonneg, and_self, or_true] + + +lemma potential_eq_bound_discrim_zero (μSq lambda : ℝ) (hLam : 0 < lambda)(φ : higgsVec) + (hV : potential μSq lambda φ = - μSq ^ 2 / (4 * lambda)) : + discrim (lambda) (- μSq) (- potential μSq lambda φ) = 0 := by + simp [discrim, hV] + field_simp + ring + +lemma potential_eq_bound_higgsVec_sq (μSq lambda : ℝ) (hLam : 0 < lambda)(φ : higgsVec) + (hV : potential μSq lambda φ = - μSq ^ 2 / (4 * lambda)) : + ‖φ‖ ^ 2 = μSq / (2 * lambda) := by + have h1 := potential_as_quad μSq lambda φ + rw [quadratic_eq_zero_iff_of_discrim_eq_zero _ + (potential_eq_bound_discrim_zero μSq lambda hLam φ hV)] at h1 + rw [h1] + field_simp + ring_nf + simp only [ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false] + exact ne_of_gt hLam + +lemma potential_eq_bound_iff (μSq lambda : ℝ) (hLam : 0 < lambda)(φ : higgsVec) : + potential μSq lambda φ = - μSq ^ 2 / (4 * lambda) ↔ ‖φ‖ ^ 2 = μSq / (2 * lambda) := by + apply Iff.intro + · intro h + exact potential_eq_bound_higgsVec_sq μSq lambda hLam φ h + · intro h + have hv : ‖φ‖ ^ 4 = ‖φ‖ ^ 2 * ‖φ‖ ^ 2 := by + ring_nf + field_simp [potential, hv, h] + ring + +lemma potential_eq_bound_iff_of_μSq_nonpos {μSq lambda : ℝ} (hLam : 0 < lambda) + (hμSq : μSq ≤ 0) (φ : higgsVec) : potential μSq lambda φ = 0 ↔ φ = 0 := by + apply Iff.intro + · intro h + exact potential_eq_zero_sol_of_μSq_nonpos hLam hμSq φ h + · intro h + simp [potential, h] + +lemma potential_eq_bound_IsMinOn (μSq lambda : ℝ) (hLam : 0 < lambda) (φ : higgsVec) + (hv : potential μSq lambda φ = - μSq ^ 2 / (4 * lambda)) : + IsMinOn (potential μSq lambda) Set.univ φ := by + rw [isMinOn_univ_iff] + intro x + rw [hv] + exact potential_bounded_below μSq lambda hLam x + +lemma potential_eq_bound_IsMinOn_of_μSq_nonpos {μSq lambda : ℝ} (hLam : 0 < lambda) + (hμSq : μSq ≤ 0) (φ : higgsVec) (hv : potential μSq lambda φ = 0) : + IsMinOn (potential μSq lambda) Set.univ φ := by + rw [isMinOn_univ_iff] + intro x + rw [hv] + exact potential_bounded_below_of_μSq_nonpos hLam hμSq x + + +lemma potential_bound_reached_of_μSq_nonneg {μSq lambda : ℝ} (hLam : 0 < lambda) (hμSq : 0 ≤ μSq) : + ∃ (φ : higgsVec), potential μSq lambda φ = - μSq ^ 2 / (4 * lambda) := by + use ![√(μSq/(2 * lambda)), 0] + refine (potential_eq_bound_iff μSq lambda hLam _).mpr ?_ + simp [@PiLp.norm_sq_eq_of_L2, Fin.sum_univ_two] + field_simp [mul_pow] + +lemma IsMinOn_potential_iff_of_μSq_nonneg {μSq lambda : ℝ} (hLam : 0 < lambda) (hμSq : 0 ≤ μSq) : + IsMinOn (potential μSq lambda) Set.univ φ ↔ ‖φ‖ ^ 2 = μSq /(2 * lambda) := by + apply Iff.intro + · intro h + obtain ⟨φm, hφ⟩ := potential_bound_reached_of_μSq_nonneg hLam hμSq + have hm := isMinOn_univ_iff.mp h φm + rw [hφ] at hm + have h1 := potential_bounded_below μSq lambda hLam φ + rw [← potential_eq_bound_iff μSq lambda hLam φ] + exact (Real.partialOrder.le_antisymm _ _ h1 hm).symm + · intro h + rw [← potential_eq_bound_iff μSq lambda hLam φ] at h + exact potential_eq_bound_IsMinOn μSq lambda hLam φ h + + +lemma IsMinOn_potential_iff_of_μSq_nonpos {μSq lambda : ℝ} (hLam : 0 < lambda) (hμSq : μSq ≤ 0) : + IsMinOn (potential μSq lambda) Set.univ φ ↔ φ = 0 := by + apply Iff.intro + · intro h + have h0 := isMinOn_univ_iff.mp h 0 + rw [(potential_eq_bound_iff_of_μSq_nonpos hLam hμSq 0).mpr (by rfl)] at h0 + have h1 := potential_bounded_below_of_μSq_nonpos hLam hμSq φ + rw [← (potential_eq_bound_iff_of_μSq_nonpos hLam hμSq φ)] + exact (Real.partialOrder.le_antisymm _ _ h1 h0).symm + · intro h + rw [← potential_eq_bound_iff_of_μSq_nonpos hLam hμSq φ] at h + exact potential_eq_bound_IsMinOn_of_μSq_nonpos hLam hμSq φ h + + +end higgsVec end higgsVec namespace higgsField @@ -101,6 +279,7 @@ open Complex Real /-- Given a `higgsField`, the corresponding map from `spaceTime` to `higgsVec`. -/ def toHiggsVec (φ : higgsField) : spaceTime → higgsVec := φ + lemma toHiggsVec_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, higgsVec) φ.toHiggsVec := by intro x0 have h1 := φ.contMDiff x0 @@ -112,6 +291,10 @@ lemma toHiggsVec_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ simp only [h2] at h1 exact h1 +lemma toField_toHiggsVec_apply (φ : higgsField) (x : spaceTime) : + (φ.toHiggsVec x).toField x = φ x := by + rfl + lemma higgsVecToFin2ℂ_toHiggsVec (φ : higgsField) : higgsVecToFin2ℂ ∘ φ.toHiggsVec = φ := by ext x rfl @@ -120,24 +303,27 @@ lemma toVec_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, Fin rw [← φ.higgsVecToFin2ℂ_toHiggsVec] exact Smooth.comp smooth_higgsVecToFin2ℂ (φ.toHiggsVec_smooth) -lemma comp_smooth (φ : higgsField) : +lemma apply_smooth (φ : higgsField) : ∀ i, Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℂ) (fun (x : spaceTime) => (φ x i)) := by rw [← smooth_pi_space] exact φ.toVec_smooth -lemma comp_re_smooth (φ : higgsField) (i : Fin 2): +lemma apply_re_smooth (φ : higgsField) (i : Fin 2): Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℝ) (reCLM ∘ (fun (x : spaceTime) => (φ x i))) := - Smooth.comp (ContinuousLinearMap.smooth reCLM) (φ.comp_smooth i) + Smooth.comp (ContinuousLinearMap.smooth reCLM) (φ.apply_smooth i) -lemma comp_im_smooth (φ : higgsField) (i : Fin 2): +lemma apply_im_smooth (φ : higgsField) (i : Fin 2): Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℝ) (imCLM ∘ (fun (x : spaceTime) => (φ x i))) := - Smooth.comp (ContinuousLinearMap.smooth imCLM) (φ.comp_smooth i) + Smooth.comp (ContinuousLinearMap.smooth imCLM) (φ.apply_smooth i) /-- Given a `higgsField`, the map `spaceTime → ℝ` obtained by taking the square norm of the higgs vector. -/ @[simp] def normSq (φ : higgsField) : spaceTime → ℝ := fun x => ( ‖φ x‖ ^ 2) +lemma toHiggsVec_norm (φ : higgsField) (x : spaceTime) : + ‖φ x‖ = ‖φ.toHiggsVec x‖ := rfl + lemma normSq_expand (φ : higgsField) : φ.normSq = fun x => (conj (φ x 0) * (φ x 0) + conj (φ x 1) * (φ x 1) ).re := by funext x @@ -151,19 +337,19 @@ lemma normSq_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, simp only [mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add] refine Smooth.add ?_ ?_ refine Smooth.smul ?_ ?_ - exact φ.comp_re_smooth 0 - exact φ.comp_re_smooth 0 + exact φ.apply_re_smooth 0 + exact φ.apply_re_smooth 0 refine Smooth.smul ?_ ?_ - exact φ.comp_im_smooth 0 - exact φ.comp_im_smooth 0 + exact φ.apply_im_smooth 0 + exact φ.apply_im_smooth 0 simp only [mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add] refine Smooth.add ?_ ?_ refine Smooth.smul ?_ ?_ - exact φ.comp_re_smooth 1 - exact φ.comp_re_smooth 1 + exact φ.apply_re_smooth 1 + exact φ.apply_re_smooth 1 refine Smooth.smul ?_ ?_ - exact φ.comp_im_smooth 1 - exact φ.comp_im_smooth 1 + exact φ.apply_im_smooth 1 + exact φ.apply_im_smooth 1 lemma normSq_nonneg (φ : higgsField) (x : spaceTime) : 0 ≤ φ.normSq x := by simp only [normSq, ge_iff_le, norm_nonneg, pow_nonneg] @@ -176,7 +362,7 @@ lemma normSq_zero (φ : higgsField) (x : spaceTime) : φ.normSq x = 0 ↔ φ x = def potential (φ : higgsField) (μSq lambda : ℝ ) (x : spaceTime) : ℝ := - μSq * φ.normSq x + lambda * φ.normSq x * φ.normSq x -lemma potential_smooth (φ : higgsField) (μSq lambda : ℝ ) : +lemma potential_smooth (φ : higgsField) (μSq lambda : ℝ) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℝ) (fun x => φ.potential μSq lambda x) := by simp only [potential, normSq, neg_mul] exact Smooth.add @@ -184,257 +370,20 @@ lemma potential_smooth (φ : higgsField) (μSq lambda : ℝ ) : (Smooth.smul (Smooth.smul smooth_const φ.normSq_smooth) φ.normSq_smooth) +lemma potential_apply (φ : higgsField) (μSq lambda : ℝ) (x : spaceTime) : + (φ.potential μSq lambda) x = higgsVec.potential μSq lambda (φ.toHiggsVec x) := by + simp [higgsVec.potential, toHiggsVec_norm] + ring + + /-- A higgs field is constant if it is equal for all `x` `y` in `spaceTime`. -/ def isConst (Φ : higgsField) : Prop := ∀ x y, Φ x = Φ y -/-- Given a vector `ℂ²` the constant higgs field with value equal to that -section. -/ -noncomputable def const (φ : higgsVec) : higgsField where - toFun := fun _ => φ - contMDiff_toFun := by - intro x - rw [Bundle.contMDiffAt_section] - exact smoothAt_const - -lemma normSq_const (φ : higgsVec) : (const φ).normSq = fun x => (norm φ) ^ 2 := by - simp only [normSq, const] - funext x - simp - -lemma potential_const (φ : higgsVec) (μSq lambda : ℝ ) : - (const φ).potential μSq lambda = fun x => - μSq * (norm φ) ^ 2 + lambda * (norm φ) ^ 4 := by - unfold potential - rw [normSq_const] - ring_nf - -/-- Given a element `v : ℝ` the `higgsField` `(0, v/√2)`. -/ -def constStd (v : ℝ) : higgsField := const ![0, v/√2] - -lemma normSq_constStd (v : ℝ) : (constStd v).normSq = fun x => v ^ 2 / 2 := by - simp only [normSq_const, constStd] - funext x - rw [@PiLp.norm_sq_eq_of_L2] - rw [Fin.sum_univ_two] - simp - -/-- The higgs potential as a function of `v : ℝ` when evaluated on a `constStd` field. -/ -def potentialConstStd (μSq lambda v : ℝ) : ℝ := - μSq /2 * v ^ 2 + lambda /4 * v ^ 4 - -lemma potential_constStd (v μSq lambda : ℝ) : - (constStd v).potential μSq lambda = fun _ => potentialConstStd μSq lambda v := by - unfold potential potentialConstStd - rw [normSq_constStd] - simp only [neg_mul] - ring_nf - -lemma smooth_potentialConstStd (μSq lambda : ℝ) : - Smooth 𝓘(ℝ, ℝ) 𝓘(ℝ, ℝ) (fun v => potentialConstStd μSq lambda v) := by - simp only [potentialConstStd] - have h1 (v : ℝ) : v ^ 4 = v * v * v * v := by - ring - simp [sq, h1] - refine Smooth.add ?_ ?_ - exact Smooth.smul smooth_const (Smooth.smul smooth_id smooth_id) - exact Smooth.smul smooth_const - (Smooth.smul (Smooth.smul (Smooth.smul smooth_id smooth_id) smooth_id) smooth_id) - - -lemma deriv_potentialConstStd (μSq lambda v : ℝ) : - deriv (fun v => potentialConstStd μSq lambda v) v = - μSq * v + lambda * v ^ 3 := by - simp only [potentialConstStd] - rw [deriv_add, deriv_mul, deriv_mul, deriv_const, deriv_const, deriv_pow, deriv_pow] - simp only [zero_mul, Nat.cast_ofNat, Nat.succ_sub_succ_eq_sub, tsub_zero, pow_one, zero_add, - neg_mul] - ring - exact differentiableAt_const _ - exact differentiableAt_pow _ - exact differentiableAt_const _ - exact differentiableAt_pow _ - exact DifferentiableAt.const_mul (differentiableAt_pow _) _ - exact DifferentiableAt.const_mul (differentiableAt_pow _) _ - -lemma deriv_potentialConstStd_zero (μSq lambda v : ℝ) (hLam : 0 < lambda) - (hv : deriv (fun v => potentialConstStd μSq lambda v) v = 0) : v = 0 ∨ v ^ 2 = μSq/lambda:= by - rw [deriv_potentialConstStd] at hv - ring_nf at hv - have h1 : v * (- μSq + lambda * v ^ 2) = 0 := by - ring_nf - linear_combination hv - simp at h1 - cases' h1 with h1 h1 - simp_all - apply Or.inr - field_simp - linear_combination h1 - -lemma potentialConstStd_bounded' (μSq lambda v x : ℝ) (hLam : 0 < lambda) : - potentialConstStd μSq lambda v = x → - μSq ^ 2 / (4 * lambda) ≤ x := by - simp only [potentialConstStd] - intro h - let y := v ^2 - have h1 : lambda / 4 * y * y + (- μSq / 2) * y + (-x) = 0 := by - simp [y] - linear_combination h - rw [quadratic_eq_zero_iff_discrim_eq_sq] at h1 - simp [discrim] at h1 - have h2 : 0 ≤ μSq ^ 2 / 2 ^ 2 + 4 * (lambda / 4) * x := by - rw [h1] - exact sq_nonneg (2 * (lambda / 4) * y + -μSq / 2) - ring_nf at h2 - rw [← neg_le_iff_add_nonneg'] at h2 - have h4 := (div_le_iff' hLam).mpr h2 - ring_nf at h4 - ring_nf - exact h4 - simp only [ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false] - exact OrderIso.mulLeft₀.proof_1 lambda hLam - -lemma potentialConstStd_bounded (μSq lambda v : ℝ) (hLam : 0 < lambda) : - - μSq ^ 2 / (4 * lambda) ≤ potentialConstStd μSq lambda v := by - apply potentialConstStd_bounded' μSq lambda v (potentialConstStd μSq lambda v) hLam - rfl - -lemma potentialConstStd_IsMinOn_of_eq_bound (μSq lambda v : ℝ) (hLam : 0 < lambda) - (hv : potentialConstStd μSq lambda v = - μSq ^ 2 / (4 * lambda)) : - IsMinOn (potentialConstStd μSq lambda) Set.univ v := by - rw [isMinOn_univ_iff] - intro x - rw [hv] - exact potentialConstStd_bounded μSq lambda x hLam - -lemma potentialConstStd_vsq_of_eq_bound (μSq lambda v : ℝ) (hLam : 0 < lambda) : - potentialConstStd μSq lambda v = - μSq ^ 2 / (4 * lambda) ↔ v ^ 2 = μSq / lambda := by - apply Iff.intro - intro h - simp [potentialConstStd] at h - field_simp at h - have h1 : (8 * lambda ^ 2) * v ^ 2 * v ^ 2 + (- 16 * μSq * lambda ) * v ^ 2 - + (8 * μSq ^ 2) = 0 := by - linear_combination h - have hd : discrim (8 * lambda ^ 2) (- 16 * μSq * lambda) (8 * μSq ^ 2) = 0 := by - simp [discrim] - ring_nf - rw [quadratic_eq_zero_iff_of_discrim_eq_zero _ hd] at h1 - field_simp at h1 ⊢ - ring_nf at h1 - have hx : 16 * lambda ≠ 0 := by - simp [hLam] - exact OrderIso.mulLeft₀.proof_1 lambda hLam - apply mul_left_cancel₀ hx - ring_nf - rw [← h1] - ring - simp only [ne_eq, mul_eq_zero, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff, false_or] - exact OrderIso.mulLeft₀.proof_1 lambda hLam - intro h - simp [potentialConstStd, h] - have hv : v ^ 4 = v^2 * v^2 := by - ring - rw [hv, h] - field_simp - ring - -lemma potentialConstStd_IsMinOn (μSq lambda v : ℝ) (hLam : 0 < lambda) (hμSq : 0 ≤ μSq) : - IsMinOn (potentialConstStd μSq lambda) Set.univ v ↔ v ^ 2 = μSq / lambda := by - apply Iff.intro - intro h - have h1 := potentialConstStd_bounded μSq lambda v hLam - rw [isMinOn_univ_iff] at h - let vmin := √(μSq / lambda) - have hvmin : vmin ^ 2 = μSq / lambda := by - simp [vmin] - field_simp - have h2 := h vmin - have h3 := (potentialConstStd_vsq_of_eq_bound μSq lambda vmin hLam).mpr hvmin - rw [h3] at h2 - rw [(potentialConstStd_vsq_of_eq_bound μSq lambda v hLam).mp] - exact (Real.partialOrder.le_antisymm _ _ h1 h2).symm - intro h - rw [← potentialConstStd_vsq_of_eq_bound μSq lambda v hLam] at h - exact potentialConstStd_IsMinOn_of_eq_bound μSq lambda v hLam h - - -lemma potentialConstStd_muSq_le_zero_nonneg (μSq lambda v : ℝ) (hLam : 0 < lambda) - (hμSq : μSq ≤ 0) : 0 ≤ potentialConstStd μSq lambda v := by - simp [potentialConstStd] - apply add_nonneg - field_simp - refine div_nonneg ?_ (by simp) - refine neg_nonneg.mpr ?_ - rw [@mul_nonpos_iff] - simp_all - apply Or.inr - exact sq_nonneg v - rw [mul_nonneg_iff] - apply Or.inl - apply And.intro - refine div_nonneg ?_ (by simp) - exact le_of_lt hLam - have hv : v ^ 4 = (v ^ 2) ^ 2 := by ring - rw [hv] - exact sq_nonneg (v ^ 2) - -lemma potentialConstStd_zero_muSq_le_zero (μSq lambda v : ℝ) (hLam : 0 < lambda) - (hμSq : μSq ≤ 0) : potentialConstStd μSq lambda v = 0 ↔ v = 0 := by - apply Iff.intro - · intro h - simp [potentialConstStd] at h - field_simp at h - have h1 : v ^ 2 * ((2 * lambda ) * v ^ 2 + (- 4 * μSq )) = 0 := by - linear_combination h - simp at h1 - cases' h1 with h1 h1 - exact h1 - have h2 : v ^ 2 = (4 * μSq) / (2 * lambda) := by - field_simp - ring_nf - linear_combination h1 - by_cases hμSqZ : μSq = 0 - rw [hμSqZ] at h2 - simpa using h2 - have h3 : ¬ (0 ≤ 4 * μSq / (2 * lambda)) := by - rw [div_nonneg_iff] - simp only [gt_iff_lt, Nat.ofNat_pos, mul_nonneg_iff_of_pos_left] - rw [not_or] - apply And.intro - simp only [not_and, not_le] - intro hm - exact (hμSqZ (le_antisymm hμSq hm)).elim - simp only [not_and, not_le, gt_iff_lt, Nat.ofNat_pos, mul_pos_iff_of_pos_left] - intro _ - simp_all only [true_or] - rw [← h2] at h3 - refine (h3 ?_).elim - exact sq_nonneg v - · intro h - simp [potentialConstStd, h] - - -lemma potentialConstStd_IsMinOn_muSq_le_zero (μSq lambda v : ℝ) (hLam : 0 < lambda) - (hμSq : μSq ≤ 0) : - IsMinOn (potentialConstStd μSq lambda) Set.univ v ↔ v = 0 := by - have hx := (potentialConstStd_zero_muSq_le_zero μSq lambda 0 hLam hμSq) - simp at hx - apply Iff.intro - intro h - rw [isMinOn_univ_iff] at h - have h1 := potentialConstStd_muSq_le_zero_nonneg μSq lambda v hLam hμSq - have h2 := h 0 - rw [hx] at h2 - exact (potentialConstStd_zero_muSq_le_zero μSq lambda v hLam hμSq).mp - (Real.partialOrder.le_antisymm _ _ h1 h2).symm - intro h - rw [h, isMinOn_univ_iff, hx] - intro x - exact potentialConstStd_muSq_le_zero_nonneg μSq lambda x hLam hμSq - - - -lemma const_isConst (φ : Fin 2 → ℂ) : (const φ).isConst := by +lemma isConst_of_higgsVec (φ : higgsVec) : φ.toField.isConst := by intro x _ - simp [const] + simp [higgsVec.toField] -lemma isConst_iff_exists_const (Φ : higgsField) : Φ.isConst ↔ ∃ φ, Φ = const φ := by +lemma isConst_iff_of_higgsVec (Φ : higgsField) : Φ.isConst ↔ ∃ (φ : higgsVec), Φ = φ.toField := by apply Iff.intro intro h use Φ 0 @@ -447,6 +396,20 @@ lemma isConst_iff_exists_const (Φ : higgsField) : Φ.isConst ↔ ∃ φ, Φ = c subst hφ rfl +lemma normSq_of_higgsVec (φ : higgsVec) :φ.toField.normSq = fun x => (norm φ) ^ 2 := by + simp only [normSq, higgsVec.toField] + funext x + simp + +lemma potential_of_higgsVec (φ : higgsVec) (μSq lambda : ℝ ) : + φ.toField.potential μSq lambda = fun _ => higgsVec.potential μSq lambda φ := by + simp [higgsVec.potential] + unfold potential + rw [normSq_of_higgsVec] + funext x + simp only [neg_mul, add_right_inj] + ring_nf + end higgsField end