refactor: higgs fields
This commit is contained in:
parent
a4c6e092d4
commit
0bb8a97d53
1 changed files with 223 additions and 260 deletions
|
@ -93,6 +93,184 @@ noncomputable def higgsRep : Representation ℂ guageGroup higgsVec where
|
|||
rw [one_pow, Matrix.one_mulVec]
|
||||
simp only [one_smul, LinearMap.one_apply]
|
||||
|
||||
namespace higgsVec
|
||||
|
||||
/-- Given a vector `ℂ²` the constant higgs field with value equal to that
|
||||
section. -/
|
||||
noncomputable def toField (φ : higgsVec) : higgsField where
|
||||
toFun := fun _ => φ
|
||||
contMDiff_toFun := by
|
||||
intro x
|
||||
rw [Bundle.contMDiffAt_section]
|
||||
exact smoothAt_const
|
||||
|
||||
/-- The higgs potential for `higgsVec`, i.e. for constant higgs fields. -/
|
||||
def potential (μSq lambda : ℝ) (φ : higgsVec) : ℝ := - μSq * ‖φ‖ ^ 2 +
|
||||
lambda * ‖φ‖ ^ 4
|
||||
|
||||
lemma potential_snd_term_nonneg {lambda : ℝ} (hLam : 0 < lambda) (φ : higgsVec) :
|
||||
0 ≤ lambda * ‖φ‖ ^ 4 := by
|
||||
rw [mul_nonneg_iff]
|
||||
apply Or.inl
|
||||
simp_all only [ge_iff_le, norm_nonneg, pow_nonneg, and_true]
|
||||
exact le_of_lt hLam
|
||||
|
||||
lemma potential_as_quad (μSq lambda : ℝ) (φ : higgsVec) :
|
||||
lambda * ‖φ‖ ^ 2 * ‖φ‖ ^ 2 + (- μSq ) * ‖φ‖ ^ 2 + (- potential μSq lambda φ ) = 0 := by
|
||||
simp [potential]
|
||||
ring
|
||||
|
||||
lemma zero_le_potential_discrim (μSq lambda : ℝ) (φ : higgsVec) (hLam : 0 < lambda) :
|
||||
0 ≤ discrim (lambda ) (- μSq ) (- potential μSq lambda φ) := by
|
||||
have h1 := potential_as_quad μSq lambda φ
|
||||
rw [quadratic_eq_zero_iff_discrim_eq_sq] at h1
|
||||
rw [h1]
|
||||
exact sq_nonneg (2 * (lambda ) * ‖φ‖ ^ 2 + -μSq)
|
||||
simp only [ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
|
||||
exact ne_of_gt hLam
|
||||
|
||||
|
||||
lemma potential_eq_zero_sol (μSq lambda : ℝ) (hLam : 0 < lambda)(φ : higgsVec)
|
||||
(hV : potential μSq lambda φ = 0) : φ = 0 ∨ ‖φ‖ ^ 2 = μSq / lambda := by
|
||||
have h1 := potential_as_quad μSq lambda φ
|
||||
rw [hV] at h1
|
||||
have h2 : ‖φ‖ ^ 2 * (lambda * ‖φ‖ ^ 2 + -μSq ) = 0 := by
|
||||
linear_combination h1
|
||||
simp at h2
|
||||
cases' h2 with h2 h2
|
||||
simp_all
|
||||
apply Or.inr
|
||||
field_simp at h2 ⊢
|
||||
ring_nf
|
||||
linear_combination h2
|
||||
|
||||
lemma potential_eq_zero_sol_of_μSq_nonpos {μSq lambda : ℝ} (hLam : 0 < lambda) (hμSq : μSq ≤ 0)
|
||||
(φ : higgsVec) (hV : potential μSq lambda φ = 0) : φ = 0 := by
|
||||
cases' (potential_eq_zero_sol μSq lambda hLam φ hV) with h1 h1
|
||||
exact h1
|
||||
by_cases hμSqZ : μSq = 0
|
||||
simpa [hμSqZ] using h1
|
||||
refine ((?_ : ¬ 0 ≤ μSq / lambda) (?_)).elim
|
||||
· simp_all [div_nonneg_iff]
|
||||
intro h
|
||||
exact lt_imp_lt_of_le_imp_le (fun _ => h) (lt_of_le_of_ne hμSq hμSqZ)
|
||||
· rw [← h1]
|
||||
exact sq_nonneg ‖φ‖
|
||||
|
||||
lemma potential_bounded_below (μSq lambda : ℝ) (hLam : 0 < lambda) (φ : higgsVec) :
|
||||
- μSq ^ 2 / (4 * lambda) ≤ potential μSq lambda φ := by
|
||||
have h1 := zero_le_potential_discrim μSq lambda φ hLam
|
||||
simp [discrim] at h1
|
||||
ring_nf at h1
|
||||
rw [← neg_le_iff_add_nonneg'] at h1
|
||||
have h3 : lambda * potential μSq lambda φ * 4 = (4 * lambda) * potential μSq lambda φ := by
|
||||
ring
|
||||
rw [h3] at h1
|
||||
have h2 := (div_le_iff' (by simp [hLam] : 0 < 4 * lambda )).mpr h1
|
||||
ring_nf at h2 ⊢
|
||||
exact h2
|
||||
|
||||
lemma potential_bounded_below_of_μSq_nonpos {μSq lambda : ℝ} (hLam : 0 < lambda)
|
||||
(hμSq : μSq ≤ 0) (φ : higgsVec) : 0 ≤ potential μSq lambda φ := by
|
||||
simp only [potential, neg_mul, add_zero]
|
||||
refine add_nonneg ?_ (potential_snd_term_nonneg hLam φ)
|
||||
field_simp
|
||||
rw [@mul_nonpos_iff]
|
||||
simp_all only [ge_iff_le, norm_nonneg, pow_nonneg, and_self, or_true]
|
||||
|
||||
|
||||
lemma potential_eq_bound_discrim_zero (μSq lambda : ℝ) (hLam : 0 < lambda)(φ : higgsVec)
|
||||
(hV : potential μSq lambda φ = - μSq ^ 2 / (4 * lambda)) :
|
||||
discrim (lambda) (- μSq) (- potential μSq lambda φ) = 0 := by
|
||||
simp [discrim, hV]
|
||||
field_simp
|
||||
ring
|
||||
|
||||
lemma potential_eq_bound_higgsVec_sq (μSq lambda : ℝ) (hLam : 0 < lambda)(φ : higgsVec)
|
||||
(hV : potential μSq lambda φ = - μSq ^ 2 / (4 * lambda)) :
|
||||
‖φ‖ ^ 2 = μSq / (2 * lambda) := by
|
||||
have h1 := potential_as_quad μSq lambda φ
|
||||
rw [quadratic_eq_zero_iff_of_discrim_eq_zero _
|
||||
(potential_eq_bound_discrim_zero μSq lambda hLam φ hV)] at h1
|
||||
rw [h1]
|
||||
field_simp
|
||||
ring_nf
|
||||
simp only [ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
|
||||
exact ne_of_gt hLam
|
||||
|
||||
lemma potential_eq_bound_iff (μSq lambda : ℝ) (hLam : 0 < lambda)(φ : higgsVec) :
|
||||
potential μSq lambda φ = - μSq ^ 2 / (4 * lambda) ↔ ‖φ‖ ^ 2 = μSq / (2 * lambda) := by
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
exact potential_eq_bound_higgsVec_sq μSq lambda hLam φ h
|
||||
· intro h
|
||||
have hv : ‖φ‖ ^ 4 = ‖φ‖ ^ 2 * ‖φ‖ ^ 2 := by
|
||||
ring_nf
|
||||
field_simp [potential, hv, h]
|
||||
ring
|
||||
|
||||
lemma potential_eq_bound_iff_of_μSq_nonpos {μSq lambda : ℝ} (hLam : 0 < lambda)
|
||||
(hμSq : μSq ≤ 0) (φ : higgsVec) : potential μSq lambda φ = 0 ↔ φ = 0 := by
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
exact potential_eq_zero_sol_of_μSq_nonpos hLam hμSq φ h
|
||||
· intro h
|
||||
simp [potential, h]
|
||||
|
||||
lemma potential_eq_bound_IsMinOn (μSq lambda : ℝ) (hLam : 0 < lambda) (φ : higgsVec)
|
||||
(hv : potential μSq lambda φ = - μSq ^ 2 / (4 * lambda)) :
|
||||
IsMinOn (potential μSq lambda) Set.univ φ := by
|
||||
rw [isMinOn_univ_iff]
|
||||
intro x
|
||||
rw [hv]
|
||||
exact potential_bounded_below μSq lambda hLam x
|
||||
|
||||
lemma potential_eq_bound_IsMinOn_of_μSq_nonpos {μSq lambda : ℝ} (hLam : 0 < lambda)
|
||||
(hμSq : μSq ≤ 0) (φ : higgsVec) (hv : potential μSq lambda φ = 0) :
|
||||
IsMinOn (potential μSq lambda) Set.univ φ := by
|
||||
rw [isMinOn_univ_iff]
|
||||
intro x
|
||||
rw [hv]
|
||||
exact potential_bounded_below_of_μSq_nonpos hLam hμSq x
|
||||
|
||||
|
||||
lemma potential_bound_reached_of_μSq_nonneg {μSq lambda : ℝ} (hLam : 0 < lambda) (hμSq : 0 ≤ μSq) :
|
||||
∃ (φ : higgsVec), potential μSq lambda φ = - μSq ^ 2 / (4 * lambda) := by
|
||||
use ![√(μSq/(2 * lambda)), 0]
|
||||
refine (potential_eq_bound_iff μSq lambda hLam _).mpr ?_
|
||||
simp [@PiLp.norm_sq_eq_of_L2, Fin.sum_univ_two]
|
||||
field_simp [mul_pow]
|
||||
|
||||
lemma IsMinOn_potential_iff_of_μSq_nonneg {μSq lambda : ℝ} (hLam : 0 < lambda) (hμSq : 0 ≤ μSq) :
|
||||
IsMinOn (potential μSq lambda) Set.univ φ ↔ ‖φ‖ ^ 2 = μSq /(2 * lambda) := by
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
obtain ⟨φm, hφ⟩ := potential_bound_reached_of_μSq_nonneg hLam hμSq
|
||||
have hm := isMinOn_univ_iff.mp h φm
|
||||
rw [hφ] at hm
|
||||
have h1 := potential_bounded_below μSq lambda hLam φ
|
||||
rw [← potential_eq_bound_iff μSq lambda hLam φ]
|
||||
exact (Real.partialOrder.le_antisymm _ _ h1 hm).symm
|
||||
· intro h
|
||||
rw [← potential_eq_bound_iff μSq lambda hLam φ] at h
|
||||
exact potential_eq_bound_IsMinOn μSq lambda hLam φ h
|
||||
|
||||
|
||||
lemma IsMinOn_potential_iff_of_μSq_nonpos {μSq lambda : ℝ} (hLam : 0 < lambda) (hμSq : μSq ≤ 0) :
|
||||
IsMinOn (potential μSq lambda) Set.univ φ ↔ φ = 0 := by
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
have h0 := isMinOn_univ_iff.mp h 0
|
||||
rw [(potential_eq_bound_iff_of_μSq_nonpos hLam hμSq 0).mpr (by rfl)] at h0
|
||||
have h1 := potential_bounded_below_of_μSq_nonpos hLam hμSq φ
|
||||
rw [← (potential_eq_bound_iff_of_μSq_nonpos hLam hμSq φ)]
|
||||
exact (Real.partialOrder.le_antisymm _ _ h1 h0).symm
|
||||
· intro h
|
||||
rw [← potential_eq_bound_iff_of_μSq_nonpos hLam hμSq φ] at h
|
||||
exact potential_eq_bound_IsMinOn_of_μSq_nonpos hLam hμSq φ h
|
||||
|
||||
|
||||
end higgsVec
|
||||
end higgsVec
|
||||
|
||||
namespace higgsField
|
||||
|
@ -101,6 +279,7 @@ open Complex Real
|
|||
/-- Given a `higgsField`, the corresponding map from `spaceTime` to `higgsVec`. -/
|
||||
def toHiggsVec (φ : higgsField) : spaceTime → higgsVec := φ
|
||||
|
||||
|
||||
lemma toHiggsVec_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, higgsVec) φ.toHiggsVec := by
|
||||
intro x0
|
||||
have h1 := φ.contMDiff x0
|
||||
|
@ -112,6 +291,10 @@ lemma toHiggsVec_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ
|
|||
simp only [h2] at h1
|
||||
exact h1
|
||||
|
||||
lemma toField_toHiggsVec_apply (φ : higgsField) (x : spaceTime) :
|
||||
(φ.toHiggsVec x).toField x = φ x := by
|
||||
rfl
|
||||
|
||||
lemma higgsVecToFin2ℂ_toHiggsVec (φ : higgsField) : higgsVecToFin2ℂ ∘ φ.toHiggsVec = φ := by
|
||||
ext x
|
||||
rfl
|
||||
|
@ -120,24 +303,27 @@ lemma toVec_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, Fin
|
|||
rw [← φ.higgsVecToFin2ℂ_toHiggsVec]
|
||||
exact Smooth.comp smooth_higgsVecToFin2ℂ (φ.toHiggsVec_smooth)
|
||||
|
||||
lemma comp_smooth (φ : higgsField) :
|
||||
lemma apply_smooth (φ : higgsField) :
|
||||
∀ i, Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℂ) (fun (x : spaceTime) => (φ x i)) := by
|
||||
rw [← smooth_pi_space]
|
||||
exact φ.toVec_smooth
|
||||
|
||||
lemma comp_re_smooth (φ : higgsField) (i : Fin 2):
|
||||
lemma apply_re_smooth (φ : higgsField) (i : Fin 2):
|
||||
Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℝ) (reCLM ∘ (fun (x : spaceTime) => (φ x i))) :=
|
||||
Smooth.comp (ContinuousLinearMap.smooth reCLM) (φ.comp_smooth i)
|
||||
Smooth.comp (ContinuousLinearMap.smooth reCLM) (φ.apply_smooth i)
|
||||
|
||||
lemma comp_im_smooth (φ : higgsField) (i : Fin 2):
|
||||
lemma apply_im_smooth (φ : higgsField) (i : Fin 2):
|
||||
Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℝ) (imCLM ∘ (fun (x : spaceTime) => (φ x i))) :=
|
||||
Smooth.comp (ContinuousLinearMap.smooth imCLM) (φ.comp_smooth i)
|
||||
Smooth.comp (ContinuousLinearMap.smooth imCLM) (φ.apply_smooth i)
|
||||
|
||||
/-- Given a `higgsField`, the map `spaceTime → ℝ` obtained by taking the square norm of the
|
||||
higgs vector. -/
|
||||
@[simp]
|
||||
def normSq (φ : higgsField) : spaceTime → ℝ := fun x => ( ‖φ x‖ ^ 2)
|
||||
|
||||
lemma toHiggsVec_norm (φ : higgsField) (x : spaceTime) :
|
||||
‖φ x‖ = ‖φ.toHiggsVec x‖ := rfl
|
||||
|
||||
lemma normSq_expand (φ : higgsField) :
|
||||
φ.normSq = fun x => (conj (φ x 0) * (φ x 0) + conj (φ x 1) * (φ x 1) ).re := by
|
||||
funext x
|
||||
|
@ -151,19 +337,19 @@ lemma normSq_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ,
|
|||
simp only [mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add]
|
||||
refine Smooth.add ?_ ?_
|
||||
refine Smooth.smul ?_ ?_
|
||||
exact φ.comp_re_smooth 0
|
||||
exact φ.comp_re_smooth 0
|
||||
exact φ.apply_re_smooth 0
|
||||
exact φ.apply_re_smooth 0
|
||||
refine Smooth.smul ?_ ?_
|
||||
exact φ.comp_im_smooth 0
|
||||
exact φ.comp_im_smooth 0
|
||||
exact φ.apply_im_smooth 0
|
||||
exact φ.apply_im_smooth 0
|
||||
simp only [mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add]
|
||||
refine Smooth.add ?_ ?_
|
||||
refine Smooth.smul ?_ ?_
|
||||
exact φ.comp_re_smooth 1
|
||||
exact φ.comp_re_smooth 1
|
||||
exact φ.apply_re_smooth 1
|
||||
exact φ.apply_re_smooth 1
|
||||
refine Smooth.smul ?_ ?_
|
||||
exact φ.comp_im_smooth 1
|
||||
exact φ.comp_im_smooth 1
|
||||
exact φ.apply_im_smooth 1
|
||||
exact φ.apply_im_smooth 1
|
||||
|
||||
lemma normSq_nonneg (φ : higgsField) (x : spaceTime) : 0 ≤ φ.normSq x := by
|
||||
simp only [normSq, ge_iff_le, norm_nonneg, pow_nonneg]
|
||||
|
@ -184,257 +370,20 @@ lemma potential_smooth (φ : higgsField) (μSq lambda : ℝ ) :
|
|||
(Smooth.smul (Smooth.smul smooth_const φ.normSq_smooth) φ.normSq_smooth)
|
||||
|
||||
|
||||
lemma potential_apply (φ : higgsField) (μSq lambda : ℝ) (x : spaceTime) :
|
||||
(φ.potential μSq lambda) x = higgsVec.potential μSq lambda (φ.toHiggsVec x) := by
|
||||
simp [higgsVec.potential, toHiggsVec_norm]
|
||||
ring
|
||||
|
||||
|
||||
/-- A higgs field is constant if it is equal for all `x` `y` in `spaceTime`. -/
|
||||
def isConst (Φ : higgsField) : Prop := ∀ x y, Φ x = Φ y
|
||||
|
||||
/-- Given a vector `ℂ²` the constant higgs field with value equal to that
|
||||
section. -/
|
||||
noncomputable def const (φ : higgsVec) : higgsField where
|
||||
toFun := fun _ => φ
|
||||
contMDiff_toFun := by
|
||||
intro x
|
||||
rw [Bundle.contMDiffAt_section]
|
||||
exact smoothAt_const
|
||||
|
||||
lemma normSq_const (φ : higgsVec) : (const φ).normSq = fun x => (norm φ) ^ 2 := by
|
||||
simp only [normSq, const]
|
||||
funext x
|
||||
simp
|
||||
|
||||
lemma potential_const (φ : higgsVec) (μSq lambda : ℝ ) :
|
||||
(const φ).potential μSq lambda = fun x => - μSq * (norm φ) ^ 2 + lambda * (norm φ) ^ 4 := by
|
||||
unfold potential
|
||||
rw [normSq_const]
|
||||
ring_nf
|
||||
|
||||
/-- Given a element `v : ℝ` the `higgsField` `(0, v/√2)`. -/
|
||||
def constStd (v : ℝ) : higgsField := const ![0, v/√2]
|
||||
|
||||
lemma normSq_constStd (v : ℝ) : (constStd v).normSq = fun x => v ^ 2 / 2 := by
|
||||
simp only [normSq_const, constStd]
|
||||
funext x
|
||||
rw [@PiLp.norm_sq_eq_of_L2]
|
||||
rw [Fin.sum_univ_two]
|
||||
simp
|
||||
|
||||
/-- The higgs potential as a function of `v : ℝ` when evaluated on a `constStd` field. -/
|
||||
def potentialConstStd (μSq lambda v : ℝ) : ℝ := - μSq /2 * v ^ 2 + lambda /4 * v ^ 4
|
||||
|
||||
lemma potential_constStd (v μSq lambda : ℝ) :
|
||||
(constStd v).potential μSq lambda = fun _ => potentialConstStd μSq lambda v := by
|
||||
unfold potential potentialConstStd
|
||||
rw [normSq_constStd]
|
||||
simp only [neg_mul]
|
||||
ring_nf
|
||||
|
||||
lemma smooth_potentialConstStd (μSq lambda : ℝ) :
|
||||
Smooth 𝓘(ℝ, ℝ) 𝓘(ℝ, ℝ) (fun v => potentialConstStd μSq lambda v) := by
|
||||
simp only [potentialConstStd]
|
||||
have h1 (v : ℝ) : v ^ 4 = v * v * v * v := by
|
||||
ring
|
||||
simp [sq, h1]
|
||||
refine Smooth.add ?_ ?_
|
||||
exact Smooth.smul smooth_const (Smooth.smul smooth_id smooth_id)
|
||||
exact Smooth.smul smooth_const
|
||||
(Smooth.smul (Smooth.smul (Smooth.smul smooth_id smooth_id) smooth_id) smooth_id)
|
||||
|
||||
|
||||
lemma deriv_potentialConstStd (μSq lambda v : ℝ) :
|
||||
deriv (fun v => potentialConstStd μSq lambda v) v = - μSq * v + lambda * v ^ 3 := by
|
||||
simp only [potentialConstStd]
|
||||
rw [deriv_add, deriv_mul, deriv_mul, deriv_const, deriv_const, deriv_pow, deriv_pow]
|
||||
simp only [zero_mul, Nat.cast_ofNat, Nat.succ_sub_succ_eq_sub, tsub_zero, pow_one, zero_add,
|
||||
neg_mul]
|
||||
ring
|
||||
exact differentiableAt_const _
|
||||
exact differentiableAt_pow _
|
||||
exact differentiableAt_const _
|
||||
exact differentiableAt_pow _
|
||||
exact DifferentiableAt.const_mul (differentiableAt_pow _) _
|
||||
exact DifferentiableAt.const_mul (differentiableAt_pow _) _
|
||||
|
||||
lemma deriv_potentialConstStd_zero (μSq lambda v : ℝ) (hLam : 0 < lambda)
|
||||
(hv : deriv (fun v => potentialConstStd μSq lambda v) v = 0) : v = 0 ∨ v ^ 2 = μSq/lambda:= by
|
||||
rw [deriv_potentialConstStd] at hv
|
||||
ring_nf at hv
|
||||
have h1 : v * (- μSq + lambda * v ^ 2) = 0 := by
|
||||
ring_nf
|
||||
linear_combination hv
|
||||
simp at h1
|
||||
cases' h1 with h1 h1
|
||||
simp_all
|
||||
apply Or.inr
|
||||
field_simp
|
||||
linear_combination h1
|
||||
|
||||
lemma potentialConstStd_bounded' (μSq lambda v x : ℝ) (hLam : 0 < lambda) :
|
||||
potentialConstStd μSq lambda v = x → - μSq ^ 2 / (4 * lambda) ≤ x := by
|
||||
simp only [potentialConstStd]
|
||||
intro h
|
||||
let y := v ^2
|
||||
have h1 : lambda / 4 * y * y + (- μSq / 2) * y + (-x) = 0 := by
|
||||
simp [y]
|
||||
linear_combination h
|
||||
rw [quadratic_eq_zero_iff_discrim_eq_sq] at h1
|
||||
simp [discrim] at h1
|
||||
have h2 : 0 ≤ μSq ^ 2 / 2 ^ 2 + 4 * (lambda / 4) * x := by
|
||||
rw [h1]
|
||||
exact sq_nonneg (2 * (lambda / 4) * y + -μSq / 2)
|
||||
ring_nf at h2
|
||||
rw [← neg_le_iff_add_nonneg'] at h2
|
||||
have h4 := (div_le_iff' hLam).mpr h2
|
||||
ring_nf at h4
|
||||
ring_nf
|
||||
exact h4
|
||||
simp only [ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
|
||||
exact OrderIso.mulLeft₀.proof_1 lambda hLam
|
||||
|
||||
lemma potentialConstStd_bounded (μSq lambda v : ℝ) (hLam : 0 < lambda) :
|
||||
- μSq ^ 2 / (4 * lambda) ≤ potentialConstStd μSq lambda v := by
|
||||
apply potentialConstStd_bounded' μSq lambda v (potentialConstStd μSq lambda v) hLam
|
||||
rfl
|
||||
|
||||
lemma potentialConstStd_IsMinOn_of_eq_bound (μSq lambda v : ℝ) (hLam : 0 < lambda)
|
||||
(hv : potentialConstStd μSq lambda v = - μSq ^ 2 / (4 * lambda)) :
|
||||
IsMinOn (potentialConstStd μSq lambda) Set.univ v := by
|
||||
rw [isMinOn_univ_iff]
|
||||
intro x
|
||||
rw [hv]
|
||||
exact potentialConstStd_bounded μSq lambda x hLam
|
||||
|
||||
lemma potentialConstStd_vsq_of_eq_bound (μSq lambda v : ℝ) (hLam : 0 < lambda) :
|
||||
potentialConstStd μSq lambda v = - μSq ^ 2 / (4 * lambda) ↔ v ^ 2 = μSq / lambda := by
|
||||
apply Iff.intro
|
||||
intro h
|
||||
simp [potentialConstStd] at h
|
||||
field_simp at h
|
||||
have h1 : (8 * lambda ^ 2) * v ^ 2 * v ^ 2 + (- 16 * μSq * lambda ) * v ^ 2
|
||||
+ (8 * μSq ^ 2) = 0 := by
|
||||
linear_combination h
|
||||
have hd : discrim (8 * lambda ^ 2) (- 16 * μSq * lambda) (8 * μSq ^ 2) = 0 := by
|
||||
simp [discrim]
|
||||
ring_nf
|
||||
rw [quadratic_eq_zero_iff_of_discrim_eq_zero _ hd] at h1
|
||||
field_simp at h1 ⊢
|
||||
ring_nf at h1
|
||||
have hx : 16 * lambda ≠ 0 := by
|
||||
simp [hLam]
|
||||
exact OrderIso.mulLeft₀.proof_1 lambda hLam
|
||||
apply mul_left_cancel₀ hx
|
||||
ring_nf
|
||||
rw [← h1]
|
||||
ring
|
||||
simp only [ne_eq, mul_eq_zero, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff, false_or]
|
||||
exact OrderIso.mulLeft₀.proof_1 lambda hLam
|
||||
intro h
|
||||
simp [potentialConstStd, h]
|
||||
have hv : v ^ 4 = v^2 * v^2 := by
|
||||
ring
|
||||
rw [hv, h]
|
||||
field_simp
|
||||
ring
|
||||
|
||||
lemma potentialConstStd_IsMinOn (μSq lambda v : ℝ) (hLam : 0 < lambda) (hμSq : 0 ≤ μSq) :
|
||||
IsMinOn (potentialConstStd μSq lambda) Set.univ v ↔ v ^ 2 = μSq / lambda := by
|
||||
apply Iff.intro
|
||||
intro h
|
||||
have h1 := potentialConstStd_bounded μSq lambda v hLam
|
||||
rw [isMinOn_univ_iff] at h
|
||||
let vmin := √(μSq / lambda)
|
||||
have hvmin : vmin ^ 2 = μSq / lambda := by
|
||||
simp [vmin]
|
||||
field_simp
|
||||
have h2 := h vmin
|
||||
have h3 := (potentialConstStd_vsq_of_eq_bound μSq lambda vmin hLam).mpr hvmin
|
||||
rw [h3] at h2
|
||||
rw [(potentialConstStd_vsq_of_eq_bound μSq lambda v hLam).mp]
|
||||
exact (Real.partialOrder.le_antisymm _ _ h1 h2).symm
|
||||
intro h
|
||||
rw [← potentialConstStd_vsq_of_eq_bound μSq lambda v hLam] at h
|
||||
exact potentialConstStd_IsMinOn_of_eq_bound μSq lambda v hLam h
|
||||
|
||||
|
||||
lemma potentialConstStd_muSq_le_zero_nonneg (μSq lambda v : ℝ) (hLam : 0 < lambda)
|
||||
(hμSq : μSq ≤ 0) : 0 ≤ potentialConstStd μSq lambda v := by
|
||||
simp [potentialConstStd]
|
||||
apply add_nonneg
|
||||
field_simp
|
||||
refine div_nonneg ?_ (by simp)
|
||||
refine neg_nonneg.mpr ?_
|
||||
rw [@mul_nonpos_iff]
|
||||
simp_all
|
||||
apply Or.inr
|
||||
exact sq_nonneg v
|
||||
rw [mul_nonneg_iff]
|
||||
apply Or.inl
|
||||
apply And.intro
|
||||
refine div_nonneg ?_ (by simp)
|
||||
exact le_of_lt hLam
|
||||
have hv : v ^ 4 = (v ^ 2) ^ 2 := by ring
|
||||
rw [hv]
|
||||
exact sq_nonneg (v ^ 2)
|
||||
|
||||
lemma potentialConstStd_zero_muSq_le_zero (μSq lambda v : ℝ) (hLam : 0 < lambda)
|
||||
(hμSq : μSq ≤ 0) : potentialConstStd μSq lambda v = 0 ↔ v = 0 := by
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
simp [potentialConstStd] at h
|
||||
field_simp at h
|
||||
have h1 : v ^ 2 * ((2 * lambda ) * v ^ 2 + (- 4 * μSq )) = 0 := by
|
||||
linear_combination h
|
||||
simp at h1
|
||||
cases' h1 with h1 h1
|
||||
exact h1
|
||||
have h2 : v ^ 2 = (4 * μSq) / (2 * lambda) := by
|
||||
field_simp
|
||||
ring_nf
|
||||
linear_combination h1
|
||||
by_cases hμSqZ : μSq = 0
|
||||
rw [hμSqZ] at h2
|
||||
simpa using h2
|
||||
have h3 : ¬ (0 ≤ 4 * μSq / (2 * lambda)) := by
|
||||
rw [div_nonneg_iff]
|
||||
simp only [gt_iff_lt, Nat.ofNat_pos, mul_nonneg_iff_of_pos_left]
|
||||
rw [not_or]
|
||||
apply And.intro
|
||||
simp only [not_and, not_le]
|
||||
intro hm
|
||||
exact (hμSqZ (le_antisymm hμSq hm)).elim
|
||||
simp only [not_and, not_le, gt_iff_lt, Nat.ofNat_pos, mul_pos_iff_of_pos_left]
|
||||
intro _
|
||||
simp_all only [true_or]
|
||||
rw [← h2] at h3
|
||||
refine (h3 ?_).elim
|
||||
exact sq_nonneg v
|
||||
· intro h
|
||||
simp [potentialConstStd, h]
|
||||
|
||||
|
||||
lemma potentialConstStd_IsMinOn_muSq_le_zero (μSq lambda v : ℝ) (hLam : 0 < lambda)
|
||||
(hμSq : μSq ≤ 0) :
|
||||
IsMinOn (potentialConstStd μSq lambda) Set.univ v ↔ v = 0 := by
|
||||
have hx := (potentialConstStd_zero_muSq_le_zero μSq lambda 0 hLam hμSq)
|
||||
simp at hx
|
||||
apply Iff.intro
|
||||
intro h
|
||||
rw [isMinOn_univ_iff] at h
|
||||
have h1 := potentialConstStd_muSq_le_zero_nonneg μSq lambda v hLam hμSq
|
||||
have h2 := h 0
|
||||
rw [hx] at h2
|
||||
exact (potentialConstStd_zero_muSq_le_zero μSq lambda v hLam hμSq).mp
|
||||
(Real.partialOrder.le_antisymm _ _ h1 h2).symm
|
||||
intro h
|
||||
rw [h, isMinOn_univ_iff, hx]
|
||||
intro x
|
||||
exact potentialConstStd_muSq_le_zero_nonneg μSq lambda x hLam hμSq
|
||||
|
||||
|
||||
|
||||
lemma const_isConst (φ : Fin 2 → ℂ) : (const φ).isConst := by
|
||||
lemma isConst_of_higgsVec (φ : higgsVec) : φ.toField.isConst := by
|
||||
intro x _
|
||||
simp [const]
|
||||
simp [higgsVec.toField]
|
||||
|
||||
lemma isConst_iff_exists_const (Φ : higgsField) : Φ.isConst ↔ ∃ φ, Φ = const φ := by
|
||||
lemma isConst_iff_of_higgsVec (Φ : higgsField) : Φ.isConst ↔ ∃ (φ : higgsVec), Φ = φ.toField := by
|
||||
apply Iff.intro
|
||||
intro h
|
||||
use Φ 0
|
||||
|
@ -447,6 +396,20 @@ lemma isConst_iff_exists_const (Φ : higgsField) : Φ.isConst ↔ ∃ φ, Φ = c
|
|||
subst hφ
|
||||
rfl
|
||||
|
||||
lemma normSq_of_higgsVec (φ : higgsVec) :φ.toField.normSq = fun x => (norm φ) ^ 2 := by
|
||||
simp only [normSq, higgsVec.toField]
|
||||
funext x
|
||||
simp
|
||||
|
||||
lemma potential_of_higgsVec (φ : higgsVec) (μSq lambda : ℝ ) :
|
||||
φ.toField.potential μSq lambda = fun _ => higgsVec.potential μSq lambda φ := by
|
||||
simp [higgsVec.potential]
|
||||
unfold potential
|
||||
rw [normSq_of_higgsVec]
|
||||
funext x
|
||||
simp only [neg_mul, add_right_inj]
|
||||
ring_nf
|
||||
|
||||
|
||||
end higgsField
|
||||
end
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue