refactor: Lint
This commit is contained in:
parent
e458300359
commit
0edce53795
15 changed files with 2406 additions and 2197 deletions
|
@ -0,0 +1,293 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.SpaceTime.LorentzTensor.IndexNotation.WithUniqueDual
|
||||
import Mathlib.Algebra.Order.Ring.Nat
|
||||
import Mathlib.Data.Finset.Sort
|
||||
/-!
|
||||
|
||||
# withDuals equal to withUniqueDuals
|
||||
|
||||
-/
|
||||
|
||||
namespace IndexNotation
|
||||
|
||||
namespace IndexList
|
||||
|
||||
variable {X : Type} [IndexNotation X] [Fintype X] [DecidableEq X]
|
||||
variable (l l2 l3 : IndexList X)
|
||||
|
||||
|
||||
/-!
|
||||
|
||||
## withDual equal to withUniqueDual
|
||||
|
||||
-/
|
||||
|
||||
lemma withUnqiueDual_eq_withDual_iff_unique_forall :
|
||||
l.withUniqueDual = l.withDual ↔
|
||||
∀ (i : l.withDual) j, l.AreDualInSelf i j → j = l.getDual? i := by
|
||||
apply Iff.intro
|
||||
· intro h i j hj
|
||||
rw [@Finset.ext_iff] at h
|
||||
simp [withUniqueDual] at h
|
||||
refine h i ?_ j hj
|
||||
exact withDual_isSome l i
|
||||
· intro h
|
||||
apply Finset.ext
|
||||
intro i
|
||||
apply Iff.intro
|
||||
· exact fun hi => mem_withDual_of_mem_withUniqueDual l i hi
|
||||
· intro hi
|
||||
simp [withUniqueDual]
|
||||
apply And.intro
|
||||
exact (mem_withDual_iff_isSome l i).mp hi
|
||||
intro j hj
|
||||
exact h ⟨i, hi⟩ j hj
|
||||
|
||||
lemma withUnqiueDual_eq_withDual_iff :
|
||||
l.withUniqueDual = l.withDual ↔
|
||||
∀ i, (l.getDual? i).bind l.getDual? = Option.guard (fun i => i ∈ l.withDual) i := by
|
||||
apply Iff.intro
|
||||
· intro h i
|
||||
by_cases hi : i ∈ l.withDual
|
||||
· have hii : i ∈ l.withUniqueDual := by
|
||||
simp_all only
|
||||
change (l.getDual? i).bind l.getDual? = _
|
||||
simp [hii]
|
||||
symm
|
||||
rw [Option.guard_eq_some]
|
||||
exact ⟨rfl, mem_withUniqueDual_isSome l i hii⟩
|
||||
· simp at hi
|
||||
simp [Option.guard, hi]
|
||||
· intro h
|
||||
rw [withUnqiueDual_eq_withDual_iff_unique_forall]
|
||||
intro i j hj
|
||||
rcases l.getDual?_of_areDualInSelf hj with hi | hi | hi
|
||||
· have hj' := h j
|
||||
rw [hi] at hj'
|
||||
simp at hj'
|
||||
rw [hj']
|
||||
symm
|
||||
rw [Option.guard_eq_some, hi]
|
||||
exact ⟨rfl, rfl⟩
|
||||
· exact hi.symm
|
||||
· have hj' := h j
|
||||
rw [hi] at hj'
|
||||
rw [h i] at hj'
|
||||
have hi : Option.guard (fun i => i ∈ l.withDual) ↑i = some i := by
|
||||
apply Option.guard_eq_some.mpr
|
||||
simp
|
||||
rw [hi] at hj'
|
||||
simp at hj'
|
||||
have hj'' := Option.guard_eq_some.mp hj'.symm
|
||||
have hj''' := hj''.1
|
||||
rw [hj'''] at hj
|
||||
simp at hj
|
||||
|
||||
lemma withUnqiueDual_eq_withDual_iff_list_apply :
|
||||
l.withUniqueDual = l.withDual ↔
|
||||
(Fin.list l.length).map (fun i => (l.getDual? i).bind l.getDual?) =
|
||||
(Fin.list l.length).map (fun i => Option.guard (fun i => i ∈ l.withDual) i) := by
|
||||
rw [withUnqiueDual_eq_withDual_iff]
|
||||
apply Iff.intro
|
||||
exact fun h => List.map_eq_map_iff.mpr fun a _ => h a
|
||||
intro h
|
||||
intro i
|
||||
simp only [List.map_inj_left] at h
|
||||
have h1 {n : ℕ} (m : Fin n) : m ∈ Fin.list n := by
|
||||
have h1' : (Fin.list n)[m] = m := Fin.getElem_list _ _
|
||||
exact h1' ▸ List.getElem_mem _ _ _
|
||||
exact h i (h1 i)
|
||||
|
||||
/-- A boolean which is true for an index list `l` if for every index in `l` with a dual,
|
||||
that dual is unique. -/
|
||||
def withUnqiueDualEqWithDualBool : Bool :=
|
||||
if (Fin.list l.length).map (fun i => (l.getDual? i).bind l.getDual?) =
|
||||
(Fin.list l.length).map (fun i => Option.guard (fun i => i ∈ l.withDual) i) then
|
||||
true
|
||||
else
|
||||
false
|
||||
|
||||
lemma withUnqiueDual_eq_withDual_iff_list_apply_bool :
|
||||
l.withUniqueDual = l.withDual ↔ l.withUnqiueDualEqWithDualBool := by
|
||||
rw [withUnqiueDual_eq_withDual_iff_list_apply]
|
||||
apply Iff.intro
|
||||
intro h
|
||||
simp [withUnqiueDualEqWithDualBool, h]
|
||||
intro h
|
||||
simpa [withUnqiueDualEqWithDualBool] using h
|
||||
|
||||
@[simp]
|
||||
lemma withUnqiueDual_eq_withDual_of_empty (h : l.withDual = ∅) :
|
||||
l.withUniqueDual = l.withDual := by
|
||||
rw [h, Finset.eq_empty_iff_forall_not_mem]
|
||||
intro x
|
||||
by_contra hx
|
||||
have x' : l.withDual := ⟨x, l.mem_withDual_of_withUniqueDual ⟨x, hx⟩⟩
|
||||
have hx' := x'.2
|
||||
simp [h] at hx'
|
||||
|
||||
/-!
|
||||
|
||||
## withUniqueDualInOther equal to withDualInOther append conditions
|
||||
|
||||
-/
|
||||
|
||||
lemma withUniqueDualInOther_eq_withDualInOther_append_of_symm'
|
||||
(h : (l ++ l2).withUniqueDualInOther l3 = (l ++ l2).withDualInOther l3) :
|
||||
(l2 ++ l).withUniqueDualInOther l3 = (l2 ++ l).withDualInOther l3 := by
|
||||
rw [Finset.ext_iff] at h ⊢
|
||||
intro j
|
||||
obtain ⟨k, hk⟩ := appendEquiv.surjective j
|
||||
subst hk
|
||||
match k with
|
||||
| Sum.inl k =>
|
||||
rw [mem_append_withUniqueDualInOther_symm]
|
||||
simpa using h (appendEquiv (Sum.inr k))
|
||||
| Sum.inr k =>
|
||||
rw [← mem_append_withUniqueDualInOther_symm]
|
||||
simpa using h (appendEquiv (Sum.inl k))
|
||||
|
||||
lemma withUniqueDualInOther_eq_withDualInOther_append_of_symm :
|
||||
(l ++ l2).withUniqueDualInOther l3 = (l ++ l2).withDualInOther l3 ↔
|
||||
(l2 ++ l).withUniqueDualInOther l3 = (l2 ++ l).withDualInOther l3 := by
|
||||
apply Iff.intro
|
||||
exact l.withUniqueDualInOther_eq_withDualInOther_append_of_symm' l2 l3
|
||||
exact l2.withUniqueDualInOther_eq_withDualInOther_append_of_symm' l l3
|
||||
|
||||
lemma withUniqueDualInOther_eq_withDualInOther_of_append_symm'
|
||||
(h : l.withUniqueDualInOther (l2 ++ l3) = l.withDualInOther (l2 ++ l3)) :
|
||||
l.withUniqueDualInOther (l3 ++ l2) = l.withDualInOther (l3 ++ l2) := by
|
||||
rw [Finset.ext_iff] at h ⊢
|
||||
intro j
|
||||
rw [mem_withUniqueDualInOther_symm]
|
||||
rw [h j]
|
||||
simp only [mem_withInDualOther_iff_isSome, getDualInOther?_isSome_of_append_iff]
|
||||
exact Or.comm
|
||||
|
||||
lemma withUniqueDualInOther_eq_withDualInOther_of_append_symm :
|
||||
l.withUniqueDualInOther (l2 ++ l3) = l.withDualInOther (l2 ++ l3) ↔
|
||||
l.withUniqueDualInOther (l3 ++ l2) = l.withDualInOther (l3 ++ l2) := by
|
||||
apply Iff.intro
|
||||
exact l.withUniqueDualInOther_eq_withDualInOther_of_append_symm' l2 l3
|
||||
exact l.withUniqueDualInOther_eq_withDualInOther_of_append_symm' l3 l2
|
||||
|
||||
|
||||
/-!
|
||||
|
||||
## withDual equal to withUniqueDual append conditions
|
||||
|
||||
-/
|
||||
|
||||
|
||||
lemma append_withDual_eq_withUniqueDual_iff :
|
||||
(l ++ l2).withUniqueDual = (l ++ l2).withDual ↔
|
||||
((l.withUniqueDual ∩ (l.withDualInOther l2)ᶜ) ∪ l.withUniqueDualInOther l2)
|
||||
= l.withDual ∪ l.withDualInOther l2
|
||||
∧ (l2.withUniqueDual ∩ (l2.withDualInOther l)ᶜ) ∪ l2.withUniqueDualInOther l
|
||||
= l2.withDual ∪ l2.withDualInOther l := by
|
||||
rw [append_withUniqueDual_disjSum, withDual_append_eq_disjSum]
|
||||
simp only [Equiv.finsetCongr_apply, Finset.map_inj]
|
||||
have h (s s' : Finset (Fin l.length)) (t t' : Finset (Fin l2.length)) :
|
||||
s.disjSum t = s'.disjSum t' ↔ s = s' ∧ t = t' := by
|
||||
simp [Finset.ext_iff]
|
||||
exact h _ _ _ _
|
||||
|
||||
lemma append_withDual_eq_withUniqueDual_symm :
|
||||
(l ++ l2).withUniqueDual = (l ++ l2).withDual ↔
|
||||
(l2 ++ l).withUniqueDual = (l2 ++ l).withDual := by
|
||||
rw [append_withDual_eq_withUniqueDual_iff, append_withDual_eq_withUniqueDual_iff]
|
||||
exact And.comm
|
||||
|
||||
@[simp]
|
||||
lemma append_withDual_eq_withUniqueDual_inl (h : (l ++ l2).withUniqueDual = (l ++ l2).withDual) :
|
||||
l.withUniqueDual = l.withDual := by
|
||||
rw [Finset.ext_iff]
|
||||
intro i
|
||||
refine Iff.intro (fun h' => ?_) (fun h' => ?_)
|
||||
· exact mem_withDual_of_mem_withUniqueDual l i h'
|
||||
· have hn : appendEquiv (Sum.inl i) ∈ (l ++ l2).withUniqueDual := by
|
||||
rw [h]
|
||||
simp_all
|
||||
refine l.mem_withUniqueDual_of_inl l2 i hn ?_
|
||||
exact (mem_withDual_iff_isSome l i).mp h'
|
||||
|
||||
@[simp]
|
||||
lemma append_withDual_eq_withUniqueDual_inr (h : (l ++ l2).withUniqueDual = (l ++ l2).withDual) :
|
||||
l2.withUniqueDual = l2.withDual := by
|
||||
rw [append_withDual_eq_withUniqueDual_symm] at h
|
||||
exact append_withDual_eq_withUniqueDual_inl l2 l h
|
||||
|
||||
@[simp]
|
||||
lemma append_withDual_eq_withUniqueDual_withUniqueDualInOther_inl
|
||||
(h : (l ++ l2).withUniqueDual = (l ++ l2).withDual) :
|
||||
l.withUniqueDualInOther l2 = l.withDualInOther l2 := by
|
||||
rw [Finset.ext_iff]
|
||||
intro i
|
||||
refine Iff.intro (fun h' => ?_) (fun h' => ?_)
|
||||
· simp [h']
|
||||
· have hn : appendEquiv (Sum.inl i) ∈ (l ++ l2).withUniqueDual := by
|
||||
rw [h]
|
||||
simp_all
|
||||
refine l.mem_withUniqueDualInOther_of_inl_withDualInOther l2 i hn ?_
|
||||
exact (mem_withInDualOther_iff_isSome l l2 i).mp h'
|
||||
|
||||
@[simp]
|
||||
lemma append_withDual_eq_withUniqueDual_withUniqueDualInOther_inr
|
||||
(h : (l ++ l2).withUniqueDual = (l ++ l2).withDual) :
|
||||
l2.withUniqueDualInOther l = l2.withDualInOther l := by
|
||||
rw [append_withDual_eq_withUniqueDual_symm] at h
|
||||
exact append_withDual_eq_withUniqueDual_withUniqueDualInOther_inl l2 l h
|
||||
|
||||
lemma append_withDual_eq_withUniqueDual_iff' :
|
||||
(l ++ l2).withUniqueDual = (l ++ l2).withDual ↔
|
||||
l.withUniqueDual = l.withDual ∧ l2.withUniqueDual = l2.withDual
|
||||
∧ l.withUniqueDualInOther l2 = l.withDualInOther l2 ∧
|
||||
l2.withUniqueDualInOther l = l2.withDualInOther l := by
|
||||
apply Iff.intro
|
||||
intro h
|
||||
exact ⟨append_withDual_eq_withUniqueDual_inl l l2 h, append_withDual_eq_withUniqueDual_inr l l2 h,
|
||||
append_withDual_eq_withUniqueDual_withUniqueDualInOther_inl l l2 h,
|
||||
append_withDual_eq_withUniqueDual_withUniqueDualInOther_inr l l2 h⟩
|
||||
intro h
|
||||
rw [append_withDual_eq_withUniqueDual_iff]
|
||||
rw [h.1, h.2.1, h.2.2.1, h.2.2.2]
|
||||
have h1 : l.withDual ∩ (l.withDualInOther l2)ᶜ = l.withDual := by
|
||||
rw [Finset.inter_eq_left]
|
||||
rw [Finset.subset_iff]
|
||||
rw [← h.1, ← h.2.2.1]
|
||||
intro i hi
|
||||
simp only [withUniqueDualInOther, mem_withDual_iff_isSome, Bool.not_eq_true, Option.not_isSome,
|
||||
Option.isNone_iff_eq_none, mem_withInDualOther_iff_isSome, Finset.compl_filter, not_and,
|
||||
not_forall, Classical.not_imp, Finset.mem_filter, Finset.mem_univ, true_and]
|
||||
intro hn
|
||||
simp_all
|
||||
have h2 : l2.withDual ∩ (l2.withDualInOther l)ᶜ = l2.withDual := by
|
||||
rw [Finset.inter_eq_left]
|
||||
rw [Finset.subset_iff]
|
||||
rw [← h.2.1, ← h.2.2.2]
|
||||
intro i hi
|
||||
simp only [withUniqueDualInOther, mem_withDual_iff_isSome, Bool.not_eq_true, Option.not_isSome,
|
||||
Option.isNone_iff_eq_none, mem_withInDualOther_iff_isSome, Finset.compl_filter, not_and,
|
||||
not_forall, Classical.not_imp, Finset.mem_filter, Finset.mem_univ, true_and]
|
||||
intro hn
|
||||
simp_all
|
||||
exact ⟨congrFun (congrArg Union.union h1) (l.withDualInOther l2),
|
||||
congrFun (congrArg Union.union h2) (l2.withDualInOther l)⟩
|
||||
|
||||
lemma append_withDual_eq_withUniqueDual_swap :
|
||||
(l ++ l2 ++ l3).withUniqueDual = (l ++ l2 ++ l3).withDual
|
||||
↔ (l2 ++ l ++ l3).withUniqueDual = (l2 ++ l ++ l3).withDual := by
|
||||
rw [append_withDual_eq_withUniqueDual_iff']
|
||||
rw [append_withDual_eq_withUniqueDual_iff' (l2 ++ l) l3]
|
||||
rw [append_withDual_eq_withUniqueDual_symm]
|
||||
rw [withUniqueDualInOther_eq_withDualInOther_of_append_symm]
|
||||
rw [withUniqueDualInOther_eq_withDualInOther_append_of_symm]
|
||||
|
||||
|
||||
end IndexList
|
||||
|
||||
end IndexNotation
|
Loading…
Add table
Add a link
Reference in a new issue