Merge pull request #176 from HEPLean/informal_defs

feat: Add properties of TwoHDM
This commit is contained in:
Joseph Tooby-Smith 2024-10-01 09:41:35 +00:00 committed by GitHub
commit 0f1ca912cc
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -6,6 +6,8 @@ Authors: Joseph Tooby-Smith
import HepLean.BeyondTheStandardModel.TwoHDM.Basic
import HepLean.StandardModel.HiggsBoson.GaugeAction
import Mathlib.LinearAlgebra.Matrix.PosDef
import Mathlib.Analysis.CStarAlgebra.Matrix
import Mathlib.Analysis.Matrix
/-!
# Gauge orbits for the 2HDM
@ -19,6 +21,10 @@ namespace TwoHDM
open StandardModel
open ComplexConjugate
open HiggsField
open Manifold
open Matrix
open Complex
open SpaceTime
noncomputable section
@ -47,6 +53,15 @@ lemma prodMatrix_eq_fieldCompMatrix_sq (Φ1 Φ2 : HiggsField) (x : SpaceTime) :
/-- An instance of `PartialOrder` on `` defined through `Complex.partialOrder`. -/
local instance : PartialOrder := Complex.partialOrder
/-- An instance of `NormedAddCommGroup` on `Matrix (Fin 2) (Fin 2) ` defined through
`Matrix.normedAddCommGroup`. -/
local instance : NormedAddCommGroup (Matrix (Fin 2) (Fin 2) ) :=
Matrix.normedAddCommGroup
/-- An instance of `NormedSpace` on `Matrix (Fin 2) (Fin 2) ` defined through
`Matrix.normedSpace`. -/
local instance : NormedSpace (Matrix (Fin 2) (Fin 2) ) := Matrix.normedSpace
/-- The matrix `prodMatrix` is positive semi-definite. -/
lemma prodMatrix_posSemiDef (Φ1 Φ2 : HiggsField) (x : SpaceTime) :
(prodMatrix Φ1 Φ2 x).PosSemidef := by
@ -58,14 +73,29 @@ lemma prodMatrix_posSemiDef (Φ1 Φ2 : HiggsField) (x : SpaceTime) :
lemma prodMatrix_hermitian (Φ1 Φ2 : HiggsField) (x : SpaceTime) :
(prodMatrix Φ1 Φ2 x).IsHermitian := (prodMatrix_posSemiDef Φ1 Φ2 x).isHermitian
informal_lemma prodMatrix_smooth where
math :≈ "The map ``prodMatrix is a smooth function on spacetime."
deps :≈ [``prodMatrix]
/-- The map `prodMatrix` is a smooth function on spacetime. -/
lemma prodMatrix_smooth (Φ1 Φ2 : HiggsField) :
Smooth 𝓘(, SpaceTime) 𝓘(, Matrix (Fin 2) (Fin 2) ) (prodMatrix Φ1 Φ2) := by
rw [show 𝓘(, Matrix (Fin 2) (Fin 2) ) = modelWithCornersSelf (Fin 2 → Fin 2 → ) from rfl,
smooth_pi_space]
intro i
rw [smooth_pi_space]
intro j
fin_cases i <;> fin_cases j <;>
simpa only [prodMatrix, Fin.zero_eta, Fin.isValue, of_apply, cons_val', cons_val_zero,
empty_val', cons_val_fin_one] using smooth_innerProd _ _
informal_lemma prodMatrix_invariant where
math :≈ "The map ``prodMatrix is invariant under the simultanous action of ``gaugeAction
on the two Higgs fields."
deps :≈ [``prodMatrix, ``gaugeAction]
informal_lemma prodMatrix_to_higgsField where
math :≈ "Given any smooth map ``f from spacetime to 2 x 2 complex matrices landing on positive
semi-definite matrices, there exist smooth Higgs fields ``Φ1 and ``Φ2 such that
``f is equal to ``prodMatrix Φ1 Φ2."
deps :≈ [``prodMatrix, ``HiggsField, ``prodMatrix_smooth]
ref :≈ "https://arxiv.org/pdf/hep-ph/0605184"
end
end TwoHDM