refactor: pass at removing double spaces

This commit is contained in:
jstoobysmith 2024-07-12 10:36:39 -04:00
parent 1fe51b2e04
commit 1133b883f3
19 changed files with 121 additions and 121 deletions

View file

@ -40,19 +40,19 @@ def S₂₃ (V : Quotient CKMMatrixSetoid) : :=
else VcbAbs V / √ (VudAbs V ^ 2 + VusAbs V ^ 2)
/-- Given a CKM matrix `V` the real number corresponding to `θ₁₂` in the
standard parameterization. --/
standard parameterization. --/
def θ₁₂ (V : Quotient CKMMatrixSetoid) : := Real.arcsin (S₁₂ V)
/-- Given a CKM matrix `V` the real number corresponding to `θ₁₃` in the
standard parameterization. --/
standard parameterization. --/
def θ₁₃ (V : Quotient CKMMatrixSetoid) : := Real.arcsin (S₁₃ V)
/-- Given a CKM matrix `V` the real number corresponding to `θ₂₃` in the
standard parameterization. --/
standard parameterization. --/
def θ₂₃ (V : Quotient CKMMatrixSetoid) : := Real.arcsin (S₂₃ V)
/-- Given a CKM matrix `V` the real number corresponding to `cos θ₁₂` in the
standard parameterization. --/
standard parameterization. --/
def C₁₂ (V : Quotient CKMMatrixSetoid) : := Real.cos (θ₁₂ V)
/-- Given a CKM matrix `V` the real number corresponding to `cos θ₁₃` in the
@ -60,7 +60,7 @@ standard parameterization. --/
def C₁₃ (V : Quotient CKMMatrixSetoid) : := Real.cos (θ₁₃ V)
/-- Given a CKM matrix `V` the real number corresponding to `sin θ₂₃` in the
standard parameterization. --/
standard parameterization. --/
def C₂₃ (V : Quotient CKMMatrixSetoid) : := Real.cos (θ₂₃ V)
/-- Given a CKM matrix `V` the real number corresponding to the phase `δ₁₃` in the
@ -126,7 +126,7 @@ lemma S₂₃_leq_one (V : Quotient CKMMatrixSetoid) : S₂₃ V ≤ 1 := by
lemma S₁₂_eq_sin_θ₁₂ (V : Quotient CKMMatrixSetoid) : Real.sin (θ₁₂ V) = S₁₂ V :=
Real.sin_arcsin (le_trans (by simp) (S₁₂_nonneg V)) (S₁₂_leq_one V)
lemma S₁₃_eq_sin_θ₁₃ (V : Quotient CKMMatrixSetoid) : Real.sin (θ₁₃ V) = S₁₃ V :=
lemma S₁₃_eq_sin_θ₁₃ (V : Quotient CKMMatrixSetoid) : Real.sin (θ₁₃ V) = S₁₃ V :=
Real.sin_arcsin (le_trans (by simp) (S₁₃_nonneg V)) (S₁₃_leq_one V)
lemma S₂₃_eq_sin_θ₂₃ (V : Quotient CKMMatrixSetoid) : Real.sin (θ₂₃ V) = S₂₃ V :=
@ -168,7 +168,7 @@ lemma S₂₃_of_Vub_eq_one {V : Quotient CKMMatrixSetoid} (ha : VubAbs V = 1) :
rw [S₂₃, if_pos ha]
lemma S₂₃_of_Vub_neq_one {V : Quotient CKMMatrixSetoid} (ha : VubAbs V ≠ 1) :
S₂₃ V = VcbAbs V / √ (VudAbs V ^ 2 + VusAbs V ^ 2) := by
S₂₃ V = VcbAbs V / √ (VudAbs V ^ 2 + VusAbs V ^ 2) := by
rw [S₂₃, if_neg ha]
end sines
@ -336,9 +336,9 @@ namespace standParam
open Invariant
lemma mulExpδ₁₃_on_param_δ₁₃ (V : CKMMatrix) (δ₁₃ : ) :
mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ =
mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ =
sin (θ₁₂ ⟦V⟧) * cos (θ₁₃ ⟦V⟧) ^ 2 * sin (θ₂₃ ⟦V⟧) * sin (θ₁₃ ⟦V⟧)
* cos (θ₁₂ ⟦V⟧) * cos (θ₂₃ ⟦V⟧) * cexp (I * δ₁₃) := by
* cos (θ₁₂ ⟦V⟧) * cos (θ₂₃ ⟦V⟧) * cexp (I * δ₁₃) := by
refine mulExpδ₁₃_eq _ _ _ _ ?_ ?_ ?_ ?_
rw [S₁₂_eq_sin_θ₁₂]
exact S₁₂_nonneg _
@ -364,7 +364,7 @@ lemma mulExpδ₁₃_on_param_eq_zero_iff (V : CKMMatrix) (δ₁₃ : ) :
aesop
lemma mulExpδ₁₃_on_param_abs (V : CKMMatrix) (δ₁₃ : ) :
Complex.abs (mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) =
Complex.abs (mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) =
sin (θ₁₂ ⟦V⟧) * cos (θ₁₃ ⟦V⟧) ^ 2 * sin (θ₂₃ ⟦V⟧) * sin (θ₁₃ ⟦V⟧)
* cos (θ₁₂ ⟦V⟧) * cos (θ₂₃ ⟦V⟧) := by
rw [mulExpδ₁₃_on_param_δ₁₃]
@ -373,19 +373,19 @@ lemma mulExpδ₁₃_on_param_abs (V : CKMMatrix) (δ₁₃ : ) :
complexAbs_sin_θ₂₃, complexAbs_cos_θ₂₃]
lemma mulExpδ₁₃_on_param_neq_zero_arg (V : CKMMatrix) (δ₁₃ : )
(h1 : mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ ≠ 0 ) :
(h1 : mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ ≠ 0 ) :
cexp (arg ( mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ ) * I) =
cexp (δ₁₃ * I) := by
have h1a := mulExpδ₁₃_on_param_δ₁₃ V δ₁₃
have habs := mulExpδ₁₃_on_param_abs V δ₁₃
have h2 : mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ = Complex.abs
(mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) * exp (δ₁₃ * I) := by
have h2 : mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ = Complex.abs
(mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) * exp (δ₁₃ * I) := by
rw [habs, h1a]
ring_nf
nth_rewrite 1 [← abs_mul_exp_arg_mul_I (mulExpδ₁₃
⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ )] at h2
have habs_neq_zero :
(Complex.abs (mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) : ) ≠ 0 := by
(Complex.abs (mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) : ) ≠ 0 := by
simp only [ne_eq, ofReal_eq_zero, map_eq_zero]
exact h1
rw [← mul_right_inj' habs_neq_zero]
@ -514,7 +514,7 @@ lemma eq_standParam_of_fstRowThdColRealCond {V : CKMMatrix} (hb : [V]ud ≠ 0
funext i
fin_cases i
simp only [uRow, Fin.isValue, Fin.zero_eta, cons_val_zero, standParam, standParamAsMatrix,
ofReal_cos, ofReal_sin, ofReal_neg, mul_neg, neg_mul, neg_neg, cons_val', empty_val',
ofReal_cos, ofReal_sin, ofReal_neg, mul_neg, neg_mul, neg_neg, cons_val', empty_val',
cons_val_fin_one, cons_val_one, head_cons, cons_val_two, tail_cons]
rw [hV.1, VudAbs_eq_C₁₂_mul_C₁₃ ⟦V⟧]
simp [C₁₂, C₁₃]
@ -613,7 +613,7 @@ theorem exists_δ₁₃ (V : CKMMatrix) :
rw [hUV] at hna
simp [VAbs] at hna
simp_all
have hU' := eq_standParam_of_fstRowThdColRealCond haU hU.2
have hU' := eq_standParam_of_fstRowThdColRealCond haU hU.2
rw [hU'] at hU
use (- arg ([U]ub))
rw [← hUV]
@ -639,7 +639,7 @@ theorem eq_standardParameterization_δ₃ (V : CKMMatrix) :
obtain ⟨δ₁₃', hδ₃⟩ := exists_δ₁₃ V
have hSV := (Quotient.eq.mpr (hδ₃))
by_cases h : Invariant.mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃'⟧ ≠ 0
have h2 := eq_exp_of_phases (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃'
have h2 := eq_exp_of_phases (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃'
(δ₁₃ ⟦V⟧) (by rw [← mulExpδ₁₃_on_param_neq_zero_arg V δ₁₃' h, ← hSV, δ₁₃, Invariant.mulExpδ₁₃])
rw [h2] at hδ₃
exact hδ₃