refactor: pass at removing double spaces
This commit is contained in:
parent
1fe51b2e04
commit
1133b883f3
19 changed files with 121 additions and 121 deletions
|
@ -40,19 +40,19 @@ def S₂₃ (V : Quotient CKMMatrixSetoid) : ℝ :=
|
|||
else VcbAbs V / √ (VudAbs V ^ 2 + VusAbs V ^ 2)
|
||||
|
||||
/-- Given a CKM matrix `V` the real number corresponding to `θ₁₂` in the
|
||||
standard parameterization. --/
|
||||
standard parameterization. --/
|
||||
def θ₁₂ (V : Quotient CKMMatrixSetoid) : ℝ := Real.arcsin (S₁₂ V)
|
||||
|
||||
/-- Given a CKM matrix `V` the real number corresponding to `θ₁₃` in the
|
||||
standard parameterization. --/
|
||||
standard parameterization. --/
|
||||
def θ₁₃ (V : Quotient CKMMatrixSetoid) : ℝ := Real.arcsin (S₁₃ V)
|
||||
|
||||
/-- Given a CKM matrix `V` the real number corresponding to `θ₂₃` in the
|
||||
standard parameterization. --/
|
||||
standard parameterization. --/
|
||||
def θ₂₃ (V : Quotient CKMMatrixSetoid) : ℝ := Real.arcsin (S₂₃ V)
|
||||
|
||||
/-- Given a CKM matrix `V` the real number corresponding to `cos θ₁₂` in the
|
||||
standard parameterization. --/
|
||||
standard parameterization. --/
|
||||
def C₁₂ (V : Quotient CKMMatrixSetoid) : ℝ := Real.cos (θ₁₂ V)
|
||||
|
||||
/-- Given a CKM matrix `V` the real number corresponding to `cos θ₁₃` in the
|
||||
|
@ -60,7 +60,7 @@ standard parameterization. --/
|
|||
def C₁₃ (V : Quotient CKMMatrixSetoid) : ℝ := Real.cos (θ₁₃ V)
|
||||
|
||||
/-- Given a CKM matrix `V` the real number corresponding to `sin θ₂₃` in the
|
||||
standard parameterization. --/
|
||||
standard parameterization. --/
|
||||
def C₂₃ (V : Quotient CKMMatrixSetoid) : ℝ := Real.cos (θ₂₃ V)
|
||||
|
||||
/-- Given a CKM matrix `V` the real number corresponding to the phase `δ₁₃` in the
|
||||
|
@ -126,7 +126,7 @@ lemma S₂₃_leq_one (V : Quotient CKMMatrixSetoid) : S₂₃ V ≤ 1 := by
|
|||
lemma S₁₂_eq_sin_θ₁₂ (V : Quotient CKMMatrixSetoid) : Real.sin (θ₁₂ V) = S₁₂ V :=
|
||||
Real.sin_arcsin (le_trans (by simp) (S₁₂_nonneg V)) (S₁₂_leq_one V)
|
||||
|
||||
lemma S₁₃_eq_sin_θ₁₃ (V : Quotient CKMMatrixSetoid) : Real.sin (θ₁₃ V) = S₁₃ V :=
|
||||
lemma S₁₃_eq_sin_θ₁₃ (V : Quotient CKMMatrixSetoid) : Real.sin (θ₁₃ V) = S₁₃ V :=
|
||||
Real.sin_arcsin (le_trans (by simp) (S₁₃_nonneg V)) (S₁₃_leq_one V)
|
||||
|
||||
lemma S₂₃_eq_sin_θ₂₃ (V : Quotient CKMMatrixSetoid) : Real.sin (θ₂₃ V) = S₂₃ V :=
|
||||
|
@ -168,7 +168,7 @@ lemma S₂₃_of_Vub_eq_one {V : Quotient CKMMatrixSetoid} (ha : VubAbs V = 1) :
|
|||
rw [S₂₃, if_pos ha]
|
||||
|
||||
lemma S₂₃_of_Vub_neq_one {V : Quotient CKMMatrixSetoid} (ha : VubAbs V ≠ 1) :
|
||||
S₂₃ V = VcbAbs V / √ (VudAbs V ^ 2 + VusAbs V ^ 2) := by
|
||||
S₂₃ V = VcbAbs V / √ (VudAbs V ^ 2 + VusAbs V ^ 2) := by
|
||||
rw [S₂₃, if_neg ha]
|
||||
|
||||
end sines
|
||||
|
@ -336,9 +336,9 @@ namespace standParam
|
|||
open Invariant
|
||||
|
||||
lemma mulExpδ₁₃_on_param_δ₁₃ (V : CKMMatrix) (δ₁₃ : ℝ) :
|
||||
mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ =
|
||||
mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ =
|
||||
sin (θ₁₂ ⟦V⟧) * cos (θ₁₃ ⟦V⟧) ^ 2 * sin (θ₂₃ ⟦V⟧) * sin (θ₁₃ ⟦V⟧)
|
||||
* cos (θ₁₂ ⟦V⟧) * cos (θ₂₃ ⟦V⟧) * cexp (I * δ₁₃) := by
|
||||
* cos (θ₁₂ ⟦V⟧) * cos (θ₂₃ ⟦V⟧) * cexp (I * δ₁₃) := by
|
||||
refine mulExpδ₁₃_eq _ _ _ _ ?_ ?_ ?_ ?_
|
||||
rw [S₁₂_eq_sin_θ₁₂]
|
||||
exact S₁₂_nonneg _
|
||||
|
@ -364,7 +364,7 @@ lemma mulExpδ₁₃_on_param_eq_zero_iff (V : CKMMatrix) (δ₁₃ : ℝ) :
|
|||
aesop
|
||||
|
||||
lemma mulExpδ₁₃_on_param_abs (V : CKMMatrix) (δ₁₃ : ℝ) :
|
||||
Complex.abs (mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) =
|
||||
Complex.abs (mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) =
|
||||
sin (θ₁₂ ⟦V⟧) * cos (θ₁₃ ⟦V⟧) ^ 2 * sin (θ₂₃ ⟦V⟧) * sin (θ₁₃ ⟦V⟧)
|
||||
* cos (θ₁₂ ⟦V⟧) * cos (θ₂₃ ⟦V⟧) := by
|
||||
rw [mulExpδ₁₃_on_param_δ₁₃]
|
||||
|
@ -373,19 +373,19 @@ lemma mulExpδ₁₃_on_param_abs (V : CKMMatrix) (δ₁₃ : ℝ) :
|
|||
complexAbs_sin_θ₂₃, complexAbs_cos_θ₂₃]
|
||||
|
||||
lemma mulExpδ₁₃_on_param_neq_zero_arg (V : CKMMatrix) (δ₁₃ : ℝ)
|
||||
(h1 : mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ ≠ 0 ) :
|
||||
(h1 : mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ ≠ 0 ) :
|
||||
cexp (arg ( mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ ) * I) =
|
||||
cexp (δ₁₃ * I) := by
|
||||
have h1a := mulExpδ₁₃_on_param_δ₁₃ V δ₁₃
|
||||
have habs := mulExpδ₁₃_on_param_abs V δ₁₃
|
||||
have h2 : mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ = Complex.abs
|
||||
(mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) * exp (δ₁₃ * I) := by
|
||||
have h2 : mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ = Complex.abs
|
||||
(mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) * exp (δ₁₃ * I) := by
|
||||
rw [habs, h1a]
|
||||
ring_nf
|
||||
nth_rewrite 1 [← abs_mul_exp_arg_mul_I (mulExpδ₁₃
|
||||
⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ )] at h2
|
||||
have habs_neq_zero :
|
||||
(Complex.abs (mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) : ℂ) ≠ 0 := by
|
||||
(Complex.abs (mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) : ℂ) ≠ 0 := by
|
||||
simp only [ne_eq, ofReal_eq_zero, map_eq_zero]
|
||||
exact h1
|
||||
rw [← mul_right_inj' habs_neq_zero]
|
||||
|
@ -514,7 +514,7 @@ lemma eq_standParam_of_fstRowThdColRealCond {V : CKMMatrix} (hb : [V]ud ≠ 0
|
|||
funext i
|
||||
fin_cases i
|
||||
simp only [uRow, Fin.isValue, Fin.zero_eta, cons_val_zero, standParam, standParamAsMatrix,
|
||||
ofReal_cos, ofReal_sin, ofReal_neg, mul_neg, neg_mul, neg_neg, cons_val', empty_val',
|
||||
ofReal_cos, ofReal_sin, ofReal_neg, mul_neg, neg_mul, neg_neg, cons_val', empty_val',
|
||||
cons_val_fin_one, cons_val_one, head_cons, cons_val_two, tail_cons]
|
||||
rw [hV.1, VudAbs_eq_C₁₂_mul_C₁₃ ⟦V⟧]
|
||||
simp [C₁₂, C₁₃]
|
||||
|
@ -613,7 +613,7 @@ theorem exists_δ₁₃ (V : CKMMatrix) :
|
|||
rw [hUV] at hna
|
||||
simp [VAbs] at hna
|
||||
simp_all
|
||||
have hU' := eq_standParam_of_fstRowThdColRealCond haU hU.2
|
||||
have hU' := eq_standParam_of_fstRowThdColRealCond haU hU.2
|
||||
rw [hU'] at hU
|
||||
use (- arg ([U]ub))
|
||||
rw [← hUV]
|
||||
|
@ -639,7 +639,7 @@ theorem eq_standardParameterization_δ₃ (V : CKMMatrix) :
|
|||
obtain ⟨δ₁₃', hδ₃⟩ := exists_δ₁₃ V
|
||||
have hSV := (Quotient.eq.mpr (hδ₃))
|
||||
by_cases h : Invariant.mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃'⟧ ≠ 0
|
||||
have h2 := eq_exp_of_phases (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃'
|
||||
have h2 := eq_exp_of_phases (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃'
|
||||
(δ₁₃ ⟦V⟧) (by rw [← mulExpδ₁₃_on_param_neq_zero_arg V δ₁₃' h, ← hSV, δ₁₃, Invariant.mulExpδ₁₃])
|
||||
rw [h2] at hδ₃
|
||||
exact hδ₃
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue