refactor: pass at removing double spaces
This commit is contained in:
parent
1fe51b2e04
commit
1133b883f3
19 changed files with 121 additions and 121 deletions
|
@ -13,7 +13,7 @@ We define
|
|||
- Define `lorentzAlgebra` via `LieAlgebra.Orthogonal.so'` as a subalgebra of
|
||||
`Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ`.
|
||||
- In `mem_iff` prove that a matrix is in the Lorentz algebra if and only if it satisfies the
|
||||
condition `Aᵀ * η = - η * A`.
|
||||
condition `Aᵀ * η = - η * A`.
|
||||
|
||||
-/
|
||||
|
||||
|
@ -21,7 +21,7 @@ namespace SpaceTime
|
|||
open Matrix
|
||||
open TensorProduct
|
||||
|
||||
/-- The Lorentz algebra as a subalgebra of `Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ`. -/
|
||||
/-- The Lorentz algebra as a subalgebra of `Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ`. -/
|
||||
def lorentzAlgebra : LieSubalgebra ℝ (Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ) :=
|
||||
(LieAlgebra.Orthogonal.so' (Fin 1) (Fin 3) ℝ)
|
||||
|
||||
|
@ -34,7 +34,7 @@ lemma transpose_eta (A : lorentzAlgebra) : A.1ᵀ * η = - η * A.1 := by
|
|||
simpa [LieAlgebra.Orthogonal.so', IsSkewAdjoint, IsAdjointPair] using h1
|
||||
|
||||
lemma mem_of_transpose_eta_eq_eta_mul_self {A : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ}
|
||||
(h : Aᵀ * η = - η * A) : A ∈ lorentzAlgebra := by
|
||||
(h : Aᵀ * η = - η * A) : A ∈ lorentzAlgebra := by
|
||||
erw [mem_skewAdjointMatricesLieSubalgebra]
|
||||
simpa [LieAlgebra.Orthogonal.so', IsSkewAdjoint, IsAdjointPair] using h
|
||||
|
||||
|
@ -42,8 +42,8 @@ lemma mem_iff {A : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ} :
|
|||
A ∈ lorentzAlgebra ↔ Aᵀ * η = - η * A :=
|
||||
Iff.intro (fun h => transpose_eta ⟨A, h⟩) (fun h => mem_of_transpose_eta_eq_eta_mul_self h)
|
||||
|
||||
lemma mem_iff' (A : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ) :
|
||||
A ∈ lorentzAlgebra ↔ A = - η * Aᵀ * η := by
|
||||
lemma mem_iff' (A : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ) :
|
||||
A ∈ lorentzAlgebra ↔ A = - η * Aᵀ * η := by
|
||||
rw [mem_iff]
|
||||
refine Iff.intro (fun h => ?_) (fun h => ?_)
|
||||
· trans -η * (Aᵀ * η)
|
||||
|
@ -91,7 +91,7 @@ instance lorentzVectorAsLieRingModule : LieRingModule lorentzAlgebra (LorentzVec
|
|||
|
||||
@[simps!]
|
||||
instance spaceTimeAsLieModule : LieModule ℝ lorentzAlgebra (LorentzVector 3) where
|
||||
smul_lie r Λ x := by
|
||||
smul_lie r Λ x := by
|
||||
simp [Bracket.bracket, smul_mulVec_assoc]
|
||||
lie_smul r Λ x := by
|
||||
simp [Bracket.bracket]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue