refactor: pass at removing double spaces
This commit is contained in:
parent
1fe51b2e04
commit
1133b883f3
19 changed files with 121 additions and 121 deletions
|
@ -81,7 +81,7 @@ noncomputable def toSelfAdjointMatrix :
|
|||
rw [← h01, RCLike.conj_eq_re_sub_im]
|
||||
rfl
|
||||
exact conj_eq_iff_re.mp (congrArg (fun M => M 1 1) $ selfAdjoint.mem_iff.mp x.2 )
|
||||
map_add' x y := by
|
||||
map_add' x y := by
|
||||
ext i j : 2
|
||||
simp only [toSelfAdjointMatrix'_coe, add_apply, ofReal_add, of_apply, cons_val', empty_val',
|
||||
cons_val_fin_one, AddSubmonoid.coe_add, AddSubgroup.coe_toAddSubmonoid, Matrix.add_apply]
|
||||
|
@ -109,22 +109,22 @@ noncomputable def toSelfAdjointMatrix :
|
|||
simp only [toSelfAdjointMatrix'_coe, Fin.isValue, of_apply, cons_val', empty_val',
|
||||
cons_val_fin_one, RingHom.id_apply, selfAdjoint.val_smul, smul_apply, real_smul]
|
||||
fin_cases i <;> fin_cases j
|
||||
· rw [show (r • x) (Sum.inl 0) = r * x (Sum.inl 0) from rfl]
|
||||
rw [show (r • x) (Sum.inr 2) = r * x (Sum.inr 2) from rfl]
|
||||
· rw [show (r • x) (Sum.inl 0) = r * x (Sum.inl 0) from rfl]
|
||||
rw [show (r • x) (Sum.inr 2) = r * x (Sum.inr 2) from rfl]
|
||||
simp only [Fin.isValue, ofReal_mul, Fin.zero_eta, cons_val_zero]
|
||||
ring
|
||||
· rw [show (r • x) (Sum.inr 0) = r * x (Sum.inr 0) from rfl]
|
||||
rw [show (r • x) (Sum.inr 1) = r * x (Sum.inr 1) from rfl]
|
||||
· rw [show (r • x) (Sum.inr 0) = r * x (Sum.inr 0) from rfl]
|
||||
rw [show (r • x) (Sum.inr 1) = r * x (Sum.inr 1) from rfl]
|
||||
simp only [Fin.isValue, ofReal_mul, Fin.mk_one, cons_val_one, head_cons, Fin.zero_eta,
|
||||
cons_val_zero]
|
||||
ring
|
||||
· rw [show (r • x) (Sum.inr 0) = r * x (Sum.inr 0) from rfl]
|
||||
rw [show (r • x) (Sum.inr 1) = r * x (Sum.inr 1) from rfl]
|
||||
· rw [show (r • x) (Sum.inr 0) = r * x (Sum.inr 0) from rfl]
|
||||
rw [show (r • x) (Sum.inr 1) = r * x (Sum.inr 1) from rfl]
|
||||
simp only [Fin.isValue, ofReal_mul, Fin.zero_eta, cons_val_zero, Fin.mk_one, cons_val_one,
|
||||
head_fin_const]
|
||||
ring
|
||||
· rw [show (r • x) (Sum.inl 0) = r * x (Sum.inl 0) from rfl]
|
||||
rw [show (r • x) (Sum.inr 2) = r * x (Sum.inr 2) from rfl]
|
||||
· rw [show (r • x) (Sum.inl 0) = r * x (Sum.inl 0) from rfl]
|
||||
rw [show (r • x) (Sum.inr 2) = r * x (Sum.inr 2) from rfl]
|
||||
simp only [Fin.isValue, ofReal_mul, Fin.mk_one, cons_val_one, head_cons, head_fin_const]
|
||||
ring
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue