refactor: pass at removing double spaces

This commit is contained in:
jstoobysmith 2024-07-12 10:36:39 -04:00
parent 1fe51b2e04
commit 1133b883f3
19 changed files with 121 additions and 121 deletions

View file

@ -81,7 +81,7 @@ noncomputable def toSelfAdjointMatrix :
rw [← h01, RCLike.conj_eq_re_sub_im]
rfl
exact conj_eq_iff_re.mp (congrArg (fun M => M 1 1) $ selfAdjoint.mem_iff.mp x.2 )
map_add' x y := by
map_add' x y := by
ext i j : 2
simp only [toSelfAdjointMatrix'_coe, add_apply, ofReal_add, of_apply, cons_val', empty_val',
cons_val_fin_one, AddSubmonoid.coe_add, AddSubgroup.coe_toAddSubmonoid, Matrix.add_apply]
@ -109,22 +109,22 @@ noncomputable def toSelfAdjointMatrix :
simp only [toSelfAdjointMatrix'_coe, Fin.isValue, of_apply, cons_val', empty_val',
cons_val_fin_one, RingHom.id_apply, selfAdjoint.val_smul, smul_apply, real_smul]
fin_cases i <;> fin_cases j
· rw [show (r • x) (Sum.inl 0) = r * x (Sum.inl 0) from rfl]
rw [show (r • x) (Sum.inr 2) = r * x (Sum.inr 2) from rfl]
· rw [show (r • x) (Sum.inl 0) = r * x (Sum.inl 0) from rfl]
rw [show (r • x) (Sum.inr 2) = r * x (Sum.inr 2) from rfl]
simp only [Fin.isValue, ofReal_mul, Fin.zero_eta, cons_val_zero]
ring
· rw [show (r • x) (Sum.inr 0) = r * x (Sum.inr 0) from rfl]
rw [show (r • x) (Sum.inr 1) = r * x (Sum.inr 1) from rfl]
· rw [show (r • x) (Sum.inr 0) = r * x (Sum.inr 0) from rfl]
rw [show (r • x) (Sum.inr 1) = r * x (Sum.inr 1) from rfl]
simp only [Fin.isValue, ofReal_mul, Fin.mk_one, cons_val_one, head_cons, Fin.zero_eta,
cons_val_zero]
ring
· rw [show (r • x) (Sum.inr 0) = r * x (Sum.inr 0) from rfl]
rw [show (r • x) (Sum.inr 1) = r * x (Sum.inr 1) from rfl]
· rw [show (r • x) (Sum.inr 0) = r * x (Sum.inr 0) from rfl]
rw [show (r • x) (Sum.inr 1) = r * x (Sum.inr 1) from rfl]
simp only [Fin.isValue, ofReal_mul, Fin.zero_eta, cons_val_zero, Fin.mk_one, cons_val_one,
head_fin_const]
ring
· rw [show (r • x) (Sum.inl 0) = r * x (Sum.inl 0) from rfl]
rw [show (r • x) (Sum.inr 2) = r * x (Sum.inr 2) from rfl]
· rw [show (r • x) (Sum.inl 0) = r * x (Sum.inl 0) from rfl]
rw [show (r • x) (Sum.inr 2) = r * x (Sum.inr 2) from rfl]
simp only [Fin.isValue, ofReal_mul, Fin.mk_one, cons_val_one, head_cons, head_fin_const]
ring