refactor: pass at removing double spaces
This commit is contained in:
parent
1fe51b2e04
commit
1133b883f3
19 changed files with 121 additions and 121 deletions
|
@ -34,7 +34,7 @@ open SpaceTime
|
|||
|
||||
/-- The Higgs potential of the form `- μ² * |φ|² + 𝓵 * |φ|⁴`. -/
|
||||
@[simp]
|
||||
def potential (μ2 𝓵 : ℝ ) (φ : HiggsField) (x : SpaceTime) : ℝ :=
|
||||
def potential (μ2 𝓵 : ℝ ) (φ : HiggsField) (x : SpaceTime) : ℝ :=
|
||||
- μ2 * ‖φ‖_H ^ 2 x + 𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x
|
||||
|
||||
/-!
|
||||
|
@ -94,7 +94,7 @@ lemma snd_term_nonneg (φ : HiggsField) (x : SpaceTime) :
|
|||
and_self]
|
||||
|
||||
lemma as_quad (μ2 𝓵 : ℝ) (φ : HiggsField) (x : SpaceTime) :
|
||||
𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x + (- μ2 ) * ‖φ‖_H ^ 2 x + (- potential μ2 𝓵 φ x) = 0 := by
|
||||
𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x + (- μ2 ) * ‖φ‖_H ^ 2 x + (- potential μ2 𝓵 φ x) = 0 := by
|
||||
simp only [normSq, neg_mul, potential, neg_add_rev, neg_neg]
|
||||
ring
|
||||
|
||||
|
@ -121,7 +121,7 @@ lemma eq_zero_at (φ : HiggsField) (x : SpaceTime)
|
|||
ring_nf
|
||||
linear_combination h2
|
||||
|
||||
lemma eq_zero_at_of_μSq_nonpos {μ2 : ℝ} (hμ2 : μ2 ≤ 0)
|
||||
lemma eq_zero_at_of_μSq_nonpos {μ2 : ℝ} (hμ2 : μ2 ≤ 0)
|
||||
(φ : HiggsField) (x : SpaceTime) (hV : potential μ2 𝓵 φ x = 0) : φ x = 0 := by
|
||||
cases' (eq_zero_at μ2 h𝓵 φ x hV) with h1 h1
|
||||
exact h1
|
||||
|
@ -141,7 +141,7 @@ lemma bounded_below (φ : HiggsField) (x : SpaceTime) :
|
|||
ring_nf at h1
|
||||
rw [← neg_le_iff_add_nonneg'] at h1
|
||||
rw [show 𝓵 * potential μ2 𝓵 φ x * 4 = (4 * 𝓵) * potential μ2 𝓵 φ x by ring] at h1
|
||||
have h2 := (div_le_iff' (by simp [h𝓵] : 0 < 4 * 𝓵)).mpr h1
|
||||
have h2 := (div_le_iff' (by simp [h𝓵] : 0 < 4 * 𝓵)).mpr h1
|
||||
ring_nf at h2 ⊢
|
||||
exact h2
|
||||
|
||||
|
@ -165,13 +165,13 @@ variable (h𝓵 : 0 < 𝓵)
|
|||
-/
|
||||
|
||||
lemma discrim_eq_zero_of_eq_bound (φ : HiggsField) (x : SpaceTime)
|
||||
(hV : potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵)) :
|
||||
(hV : potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵)) :
|
||||
discrim 𝓵 (- μ2) (- potential μ2 𝓵 φ x) = 0 := by
|
||||
rw [discrim, hV]
|
||||
field_simp
|
||||
|
||||
lemma normSq_of_eq_bound (φ : HiggsField) (x : SpaceTime)
|
||||
(hV : potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵)) :
|
||||
(hV : potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵)) :
|
||||
‖φ‖_H ^ 2 x = μ2 / (2 * 𝓵) := by
|
||||
have h1 := as_quad μ2 𝓵 φ x
|
||||
rw [quadratic_eq_zero_iff_of_discrim_eq_zero _
|
||||
|
@ -180,7 +180,7 @@ lemma normSq_of_eq_bound (φ : HiggsField) (x : SpaceTime)
|
|||
exact ne_of_gt h𝓵
|
||||
|
||||
lemma eq_bound_iff (φ : HiggsField) (x : SpaceTime) :
|
||||
potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵) ↔ ‖φ‖_H ^ 2 x = μ2 / (2 * 𝓵) :=
|
||||
potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵) ↔ ‖φ‖_H ^ 2 x = μ2 / (2 * 𝓵) :=
|
||||
Iff.intro (normSq_of_eq_bound μ2 h𝓵 φ x)
|
||||
(fun h ↦ by
|
||||
rw [potential, h]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue