Merge pull request #187 from HEPLean/IndexNotation
feat: Contraction of indices
This commit is contained in:
commit
115ec7dfa0
12 changed files with 593 additions and 142 deletions
10
HepLean.lean
10
HepLean.lean
|
@ -91,7 +91,6 @@ import HepLean.SpaceTime.LorentzVector.NormOne
|
|||
import HepLean.SpaceTime.MinkowskiMetric
|
||||
import HepLean.SpaceTime.SL2C.Basic
|
||||
import HepLean.SpaceTime.WeylFermion.Basic
|
||||
import HepLean.SpaceTime.WeylFermion.ColorFun
|
||||
import HepLean.SpaceTime.WeylFermion.Modules
|
||||
import HepLean.StandardModel.Basic
|
||||
import HepLean.StandardModel.HiggsBoson.Basic
|
||||
|
@ -100,7 +99,11 @@ import HepLean.StandardModel.HiggsBoson.PointwiseInnerProd
|
|||
import HepLean.StandardModel.HiggsBoson.Potential
|
||||
import HepLean.StandardModel.Representations
|
||||
import HepLean.Tensors.Basic
|
||||
import HepLean.Tensors.ColorCat.Basic
|
||||
import HepLean.Tensors.ComplexLorentz.Basic
|
||||
import HepLean.Tensors.ComplexLorentz.ColorFun
|
||||
import HepLean.Tensors.ComplexLorentz.ContrNatTransform
|
||||
import HepLean.Tensors.ComplexLorentz.Examples
|
||||
import HepLean.Tensors.ComplexLorentz.TensorStruct
|
||||
import HepLean.Tensors.Contraction
|
||||
import HepLean.Tensors.EinsteinNotation.Basic
|
||||
import HepLean.Tensors.EinsteinNotation.IndexNotation
|
||||
|
@ -123,6 +126,9 @@ import HepLean.Tensors.IndexNotation.IndexList.Subperm
|
|||
import HepLean.Tensors.IndexNotation.IndexString
|
||||
import HepLean.Tensors.IndexNotation.TensorIndex
|
||||
import HepLean.Tensors.MulActionTensor
|
||||
import HepLean.Tensors.OverColor.Basic
|
||||
import HepLean.Tensors.OverColor.Functors
|
||||
import HepLean.Tensors.OverColor.Iso
|
||||
import HepLean.Tensors.RisingLowering
|
||||
import HepLean.Tensors.Tree.Basic
|
||||
import HepLean.Tensors.Tree.Dot
|
||||
|
|
63
HepLean/Tensors/ComplexLorentz/Basic.lean
Normal file
63
HepLean/Tensors/ComplexLorentz/Basic.lean
Normal file
|
@ -0,0 +1,63 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.OverColor.Basic
|
||||
import HepLean.Mathematics.PiTensorProduct
|
||||
/-!
|
||||
|
||||
## Complex Lorentz tensors
|
||||
|
||||
-/
|
||||
|
||||
namespace Fermion
|
||||
|
||||
open Matrix
|
||||
open MatrixGroups
|
||||
open Complex
|
||||
open TensorProduct
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
|
||||
/-- The colors associated with complex representations of SL(2, ℂ) of intrest to physics. -/
|
||||
inductive Color
|
||||
| upL : Color
|
||||
| downL : Color
|
||||
| upR : Color
|
||||
| downR : Color
|
||||
| up : Color
|
||||
| down : Color
|
||||
|
||||
/-- The involution taking a colour to its dual. -/
|
||||
def τ : Color → Color
|
||||
| Color.upL => Color.downL
|
||||
| Color.downL => Color.upL
|
||||
| Color.upR => Color.downR
|
||||
| Color.downR => Color.upR
|
||||
| Color.up => Color.down
|
||||
| Color.down => Color.up
|
||||
|
||||
/-- The function taking a color to the dimension of the basis of vectors. -/
|
||||
def evalNo : Color → ℕ
|
||||
| Color.upL => 2
|
||||
| Color.downL => 2
|
||||
| Color.upR => 2
|
||||
| Color.downR => 2
|
||||
| Color.up => 4
|
||||
| Color.down => 4
|
||||
|
||||
noncomputable section
|
||||
/-- The corresponding representations associated with a color. -/
|
||||
def colorToRep (c : Color) : Rep ℂ SL(2, ℂ) :=
|
||||
match c with
|
||||
| Color.upL => Fermion.altLeftHanded
|
||||
| Color.downL => Fermion.leftHanded
|
||||
| Color.upR => Fermion.altRightHanded
|
||||
| Color.downR => Fermion.rightHanded
|
||||
| Color.up => Lorentz.complexContr
|
||||
| Color.down => Lorentz.complexCo
|
||||
|
||||
end
|
||||
end Fermion
|
|
@ -3,7 +3,8 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.ColorCat.Basic
|
||||
import HepLean.Tensors.ComplexLorentz.Basic
|
||||
import HepLean.Tensors.OverColor.Basic
|
||||
import HepLean.Mathematics.PiTensorProduct
|
||||
/-!
|
||||
|
||||
|
@ -21,25 +22,6 @@ open TensorProduct
|
|||
open IndexNotation
|
||||
open CategoryTheory
|
||||
|
||||
/-- The colors associated with complex representations of SL(2, ℂ) of intrest to physics. -/
|
||||
inductive Color
|
||||
| upL : Color
|
||||
| downL : Color
|
||||
| upR : Color
|
||||
| downR : Color
|
||||
| up : Color
|
||||
| down : Color
|
||||
|
||||
/-- The corresponding representations associated with a color. -/
|
||||
def colorToRep (c : Color) : Rep ℂ SL(2, ℂ) :=
|
||||
match c with
|
||||
| Color.upL => altLeftHanded
|
||||
| Color.downL => leftHanded
|
||||
| Color.upR => altRightHanded
|
||||
| Color.downR => rightHanded
|
||||
| Color.up => Lorentz.complexContr
|
||||
| Color.down => Lorentz.complexCo
|
||||
|
||||
/-- The linear equivalence between `colorToRep c1` and `colorToRep c2` when `c1 = c2`. -/
|
||||
def colorToRepCongr {c1 c2 : Color} (h : c1 = c2) : colorToRep c1 ≃ₗ[ℂ] colorToRep c2 where
|
||||
toFun := Equiv.cast (congrArg (CoeSort.coe ∘ colorToRep) h)
|
||||
|
@ -177,6 +159,12 @@ lemma map_tprod {X Y : OverColor Color} (p : (i : X.left) → (colorToRep (X.hom
|
|||
((PiTensorProduct.tprod ℂ) p)) = _
|
||||
rw [PiTensorProduct.reindex_tprod, PiTensorProduct.congr_tprod]
|
||||
|
||||
lemma obj_ρ_tprod (f : OverColor Color) (M : SL(2, ℂ))
|
||||
(x : (i : f.left) → CoeSort.coe (colorToRep (f.hom i))) :
|
||||
(colorFun.obj f).ρ M ((PiTensorProduct.tprod ℂ) x) =
|
||||
PiTensorProduct.tprod ℂ (fun i => (colorToRep (f.hom i)).ρ M (x i)) := by
|
||||
exact obj'_ρ_tprod _ _ _
|
||||
|
||||
@[simp]
|
||||
lemma obj_ρ_empty (g : SL(2, ℂ)) : (colorFun.obj (𝟙_ (OverColor Color))).ρ g = LinearMap.id := by
|
||||
erw [colorFun.obj'_ρ]
|
108
HepLean/Tensors/ComplexLorentz/ContrNatTransform.lean
Normal file
108
HepLean/Tensors/ComplexLorentz/ContrNatTransform.lean
Normal file
|
@ -0,0 +1,108 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.OverColor.Basic
|
||||
import HepLean.Tensors.OverColor.Functors
|
||||
import HepLean.Tensors.ComplexLorentz.ColorFun
|
||||
import HepLean.Mathematics.PiTensorProduct
|
||||
/-!
|
||||
|
||||
## The contraction monoidal natural transformation
|
||||
|
||||
-/
|
||||
|
||||
namespace Fermion
|
||||
|
||||
noncomputable section
|
||||
|
||||
open Matrix
|
||||
open MatrixGroups
|
||||
open Complex
|
||||
open TensorProduct
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
|
||||
namespace pairwiseRepFun
|
||||
|
||||
/-- Given an object `c : OverColor Color` the representation defined by
|
||||
`⨂[R] x, colorToRep (c.hom x) ⊗[R] colorToRep (τ (c.hom x))`. -/
|
||||
def obj' (c : OverColor Color) : Rep ℂ SL(2, ℂ) := Rep.of {
|
||||
toFun := fun M => PiTensorProduct.map (fun x =>
|
||||
TensorProduct.map ((colorToRep (c.hom x)).ρ M) ((colorToRep (τ (c.hom x))).ρ M)),
|
||||
map_one' := by
|
||||
simp
|
||||
map_mul' := fun x y => by
|
||||
simp only [Functor.id_obj, _root_.map_mul]
|
||||
ext x' : 2
|
||||
simp only [LinearMap.compMultilinearMap_apply, PiTensorProduct.map_tprod, LinearMap.mul_apply]
|
||||
apply congrArg
|
||||
funext i
|
||||
change _ = (TensorProduct.map _ _ ∘ₗ TensorProduct.map _ _) (x' i)
|
||||
rw [← TensorProduct.map_comp]
|
||||
rfl}
|
||||
|
||||
/-- Given a morphism in `OverColor Color` the corresopnding linear equivalence between `obj' _`
|
||||
induced by reindexing. -/
|
||||
def mapToLinearEquiv' {f g : OverColor Color} (m : f ⟶ g) : (obj' f).V ≃ₗ[ℂ] (obj' g).V :=
|
||||
(PiTensorProduct.reindex ℂ (fun x => (colorToRep (f.hom x)).V ⊗[ℂ] (colorToRep (τ (f.hom x))).V)
|
||||
(OverColor.Hom.toEquiv m)).trans
|
||||
(PiTensorProduct.congr (fun i =>
|
||||
TensorProduct.congr (colorToRepCongr (OverColor.Hom.toEquiv_symm_apply m i))
|
||||
((colorToRepCongr (congrArg τ (OverColor.Hom.toEquiv_symm_apply m i))))))
|
||||
|
||||
lemma mapToLinearEquiv'_tprod {f g : OverColor Color} (m : f ⟶ g)
|
||||
(x : (i : f.left) → (colorToRep (f.hom i)).V ⊗[ℂ] (colorToRep (τ (f.hom i))).V) :
|
||||
mapToLinearEquiv' m (PiTensorProduct.tprod ℂ x) =
|
||||
PiTensorProduct.tprod ℂ fun i =>
|
||||
(TensorProduct.congr (colorToRepCongr (OverColor.Hom.toEquiv_symm_apply m i))
|
||||
(colorToRepCongr (mapToLinearEquiv'.proof_4 m i))) (x ((OverColor.Hom.toEquiv m).symm i)) := by
|
||||
simp [mapToLinearEquiv']
|
||||
change (PiTensorProduct.congr fun i => TensorProduct.congr (colorToRepCongr _)
|
||||
(colorToRepCongr _)) ((PiTensorProduct.reindex ℂ
|
||||
(fun x => ↑(colorToRep (f.hom x)).V ⊗[ℂ] ↑(colorToRep (τ (f.hom x))).V)
|
||||
(OverColor.Hom.toEquiv m)) ((PiTensorProduct.tprod ℂ) x)) = _
|
||||
rw [PiTensorProduct.reindex_tprod]
|
||||
erw [PiTensorProduct.congr_tprod]
|
||||
rfl
|
||||
|
||||
end pairwiseRepFun
|
||||
|
||||
/-
|
||||
|
||||
def contrPairPairwiseRep (c : OverColor Color) :
|
||||
(colorFunMon.obj c) ⊗ colorFunMon.obj ((OverColor.map τ).obj c) ⟶
|
||||
pairwiseRep c where
|
||||
hom := TensorProduct.lift (PiTensorProduct.map₂ (fun x =>
|
||||
TensorProduct.mk ℂ (colorToRep (c.hom x)).V (colorToRep (τ (c.hom x))).V))
|
||||
comm M := by
|
||||
refine HepLean.PiTensorProduct.induction_tmul (fun x y => ?_)
|
||||
simp only [Functor.id_obj, CategoryStruct.comp, Action.instMonoidalCategory_tensorObj_V,
|
||||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj, Action.tensor_ρ', LinearMap.coe_comp,
|
||||
Function.comp_apply]
|
||||
change (TensorProduct.lift
|
||||
(PiTensorProduct.map₂ fun x => TensorProduct.mk ℂ ↑(colorToRep (c.hom x)).V
|
||||
↑(colorToRep (τ (c.hom x))).V))
|
||||
((TensorProduct.map _ _)
|
||||
((PiTensorProduct.tprod ℂ) x ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) y)) = _
|
||||
rw [TensorProduct.map_tmul]
|
||||
erw [colorFun.obj_ρ_tprod, colorFun.obj_ρ_tprod]
|
||||
simp only [Functor.id_obj, lift.tmul]
|
||||
erw [PiTensorProduct.map₂_tprod_tprod]
|
||||
change _ = ((pairwiseRep c).ρ M)
|
||||
((TensorProduct.lift
|
||||
(PiTensorProduct.map₂ fun x => TensorProduct.mk ℂ ↑(colorToRep (c.hom x)).V
|
||||
↑(colorToRep (τ (c.hom x))).V))
|
||||
((PiTensorProduct.tprod ℂ) x ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) y))
|
||||
simp only [mk_apply, Functor.id_obj, lift.tmul]
|
||||
rw [PiTensorProduct.map₂_tprod_tprod]
|
||||
simp only [pairwiseRep, Functor.id_obj, Rep.coe_of, Rep.of_ρ, MonoidHom.coe_mk, OneHom.coe_mk,
|
||||
mk_apply]
|
||||
erw [PiTensorProduct.map_tprod]
|
||||
rfl
|
||||
-/
|
||||
end
|
||||
end Fermion
|
41
HepLean/Tensors/ComplexLorentz/Examples.lean
Normal file
41
HepLean/Tensors/ComplexLorentz/Examples.lean
Normal file
|
@ -0,0 +1,41 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.Tree.Basic
|
||||
import HepLean.Tensors.ComplexLorentz.TensorStruct
|
||||
import HepLean.Tensors.Tree.Elab
|
||||
/-!
|
||||
|
||||
## The tensor structure for complex Lorentz tensors
|
||||
|
||||
-/
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
open Matrix
|
||||
open MatrixGroups
|
||||
open Complex
|
||||
open TensorProduct
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
|
||||
noncomputable section
|
||||
|
||||
namespace complexLorentzTensor
|
||||
|
||||
/-- The color map for a 2d tensor with the first index up and the second index down. -/
|
||||
def upDown : Fin 2 → complexLorentzTensor.C
|
||||
| 0 => Fermion.Color.up
|
||||
| 1 => Fermion.Color.down
|
||||
|
||||
variable (T S : complexLorentzTensor.F.obj (OverColor.mk upDown))
|
||||
|
||||
/-
|
||||
#check {T | i m ⊗ S | m l}ᵀ.dot
|
||||
#check {T | i m ⊗ S | l τ(m)}ᵀ.dot
|
||||
-/
|
||||
end complexLorentzTensor
|
||||
|
||||
end
|
36
HepLean/Tensors/ComplexLorentz/TensorStruct.lean
Normal file
36
HepLean/Tensors/ComplexLorentz/TensorStruct.lean
Normal file
|
@ -0,0 +1,36 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.Tree.Basic
|
||||
import HepLean.Tensors.ComplexLorentz.ColorFun
|
||||
/-!
|
||||
|
||||
## The tensor structure for complex Lorentz tensors
|
||||
|
||||
-/
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
open Matrix
|
||||
open MatrixGroups
|
||||
open Complex
|
||||
open TensorProduct
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
|
||||
noncomputable section
|
||||
|
||||
/-- The tensor structure for complex Lorentz tensors. -/
|
||||
def complexLorentzTensor : TensorStruct where
|
||||
C := Fermion.Color
|
||||
G := SL(2, ℂ)
|
||||
G_group := inferInstance
|
||||
k := ℂ
|
||||
k_commRing := inferInstance
|
||||
F := Fermion.colorFunMon
|
||||
τ := Fermion.τ
|
||||
evalNo := Fermion.evalNo
|
||||
|
||||
end
|
|
@ -13,7 +13,7 @@ import HepLean.SpaceTime.WeylFermion.Basic
|
|||
import HepLean.SpaceTime.LorentzVector.Complex
|
||||
/-!
|
||||
|
||||
## Over category.
|
||||
## Over color category.
|
||||
|
||||
-/
|
||||
|
||||
|
@ -65,6 +65,17 @@ lemma toEquiv_comp_inv_apply (m : f ⟶ g) (i : g.left) :
|
|||
f.hom ((OverColor.Hom.toEquiv m).symm i) = g.hom i := by
|
||||
simpa [toEquiv, types_comp] using congrFun m.inv.w i
|
||||
|
||||
/-- Given a morphism in `OverColor C`, the corresponding isomorphism. -/
|
||||
def toIso (m : f ⟶ g) : f ≅ g := {
|
||||
hom := m,
|
||||
inv := m.symm,
|
||||
hom_inv_id := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
simp only [CategoryStruct.comp, Iso.self_symm_id, Iso.refl_hom, Over.id_left, types_id_apply]
|
||||
rfl,
|
||||
inv_hom_id := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
simp only [CategoryStruct.comp, Iso.symm_self_id, Iso.refl_hom, Over.id_left, types_id_apply]
|
||||
rfl}
|
||||
|
||||
end Hom
|
||||
|
||||
section monoidal
|
||||
|
@ -234,116 +245,6 @@ def mk (f : X → C) : OverColor C := Over.mk f
|
|||
|
||||
open MonoidalCategory
|
||||
|
||||
/-- The monoidal functor from `OverColor C` to `OverColor D` constructed from a map
|
||||
`f : C → D`. -/
|
||||
def map {C D : Type} (f : C → D) : MonoidalFunctor (OverColor C) (OverColor D) where
|
||||
toFunctor := Core.functorToCore (Core.inclusion (Over C) ⋙ (Over.map f))
|
||||
ε := Over.isoMk (Iso.refl _) (by
|
||||
ext x
|
||||
exact Empty.elim x)
|
||||
μ X Y := Over.isoMk (Iso.refl _) (by
|
||||
ext x
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl)
|
||||
μ_natural_left X Y := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
μ_natural_right X Y := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
associativity X Y Z := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr x => rfl
|
||||
left_unitality X := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
right_unitality X := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
|
||||
/-- The tensor product on `OverColor C` as a monoidal functor. -/
|
||||
def tensor : MonoidalFunctor (OverColor C × OverColor C) (OverColor C) where
|
||||
toFunctor := MonoidalCategory.tensor (OverColor C)
|
||||
ε := Over.isoMk (Equiv.sumEmpty Empty Empty).symm.toIso (by
|
||||
ext x
|
||||
exact Empty.elim x)
|
||||
μ X Y := Over.isoMk (Equiv.sumSumSumComm X.1.left X.2.left Y.1.left Y.2.left).toIso (by
|
||||
ext x
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr (Sum.inl x) => rfl
|
||||
| Sum.inr (Sum.inr x) => rfl)
|
||||
μ_natural_left X Y := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr (Sum.inl x) => rfl
|
||||
| Sum.inr (Sum.inr x) => rfl
|
||||
μ_natural_right X Y := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr (Sum.inl x) => rfl
|
||||
| Sum.inr (Sum.inr x) => rfl
|
||||
associativity X Y Z := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl (Sum.inl x)) => rfl
|
||||
| Sum.inl (Sum.inl (Sum.inr x)) => rfl
|
||||
| Sum.inl (Sum.inr (Sum.inl x)) => rfl
|
||||
| Sum.inl (Sum.inr (Sum.inr x)) => rfl
|
||||
| Sum.inr (Sum.inl x) => rfl
|
||||
| Sum.inr (Sum.inr x) => rfl
|
||||
left_unitality X := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => exact Empty.elim x
|
||||
| Sum.inr (Sum.inl x)=> rfl
|
||||
| Sum.inr (Sum.inr x)=> rfl
|
||||
right_unitality X := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr x => exact Empty.elim x
|
||||
|
||||
/-!
|
||||
|
||||
## Useful equivalences.
|
||||
|
||||
-/
|
||||
|
||||
/-- The isomorphism between `c : X → C` and `c ∘ e.symm` as objects in `OverColor C` for an
|
||||
equivalence `e`. -/
|
||||
def equivToIso {c : X → C} (e : X ≃ Y) : mk c ≅ mk (c ∘ e.symm) := {
|
||||
hom := Over.isoMk e.toIso ((Iso.eq_inv_comp e.toIso).mp rfl),
|
||||
inv := (Over.isoMk e.toIso ((Iso.eq_inv_comp e.toIso).mp rfl)).symm,
|
||||
hom_inv_id := by
|
||||
apply CategoryTheory.Iso.ext
|
||||
erw [CategoryTheory.Iso.trans_hom]
|
||||
simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.hom_inv_id]
|
||||
rfl,
|
||||
inv_hom_id := by
|
||||
apply CategoryTheory.Iso.ext
|
||||
erw [CategoryTheory.Iso.trans_hom]
|
||||
simp only [Iso.symm_hom, Iso.inv_hom_id]
|
||||
rfl}
|
||||
|
||||
/-- The equivalence between `Fin n.succ` and `Fin 1 ⊕ Fin n` extracting the
|
||||
`i`th component. -/
|
||||
def finExtractOne {n : ℕ} (i : Fin n.succ) : Fin n.succ ≃ Fin 1 ⊕ Fin n :=
|
||||
(finCongr (by omega : n.succ = i + 1 + (n - i))).trans <|
|
||||
finSumFinEquiv.symm.trans <|
|
||||
(Equiv.sumCongr (finSumFinEquiv.symm.trans (Equiv.sumComm (Fin i) (Fin 1)))
|
||||
(Equiv.refl (Fin (n-i)))).trans <|
|
||||
(Equiv.sumAssoc (Fin 1) (Fin i) (Fin (n - i))).trans <|
|
||||
Equiv.sumCongr (Equiv.refl (Fin 1)) (finSumFinEquiv.trans (finCongr (by omega)))
|
||||
|
||||
end OverColor
|
||||
|
||||
end IndexNotation
|
132
HepLean/Tensors/OverColor/Functors.lean
Normal file
132
HepLean/Tensors/OverColor/Functors.lean
Normal file
|
@ -0,0 +1,132 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.OverColor.Basic
|
||||
/-!
|
||||
|
||||
## Functors related to the OverColor category
|
||||
|
||||
-/
|
||||
namespace IndexNotation
|
||||
namespace OverColor
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
|
||||
/-- The monoidal functor from `OverColor C` to `OverColor D` constructed from a map
|
||||
`f : C → D`. -/
|
||||
def map {C D : Type} (f : C → D) : MonoidalFunctor (OverColor C) (OverColor D) where
|
||||
toFunctor := Core.functorToCore (Core.inclusion (Over C) ⋙ (Over.map f))
|
||||
ε := Over.isoMk (Iso.refl _) (by
|
||||
ext x
|
||||
exact Empty.elim x)
|
||||
μ X Y := Over.isoMk (Iso.refl _) (by
|
||||
ext x
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl)
|
||||
μ_natural_left X Y := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
μ_natural_right X Y := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
associativity X Y Z := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr x => rfl
|
||||
left_unitality X := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
right_unitality X := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
|
||||
/-- The tensor product on `OverColor C` as a monoidal functor. -/
|
||||
def tensor (C : Type) : MonoidalFunctor (OverColor C × OverColor C) (OverColor C) where
|
||||
toFunctor := MonoidalCategory.tensor (OverColor C)
|
||||
ε := Over.isoMk (Equiv.sumEmpty Empty Empty).symm.toIso (by
|
||||
ext x
|
||||
exact Empty.elim x)
|
||||
μ X Y := Over.isoMk (Equiv.sumSumSumComm X.1.left X.2.left Y.1.left Y.2.left).toIso (by
|
||||
ext x
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr (Sum.inl x) => rfl
|
||||
| Sum.inr (Sum.inr x) => rfl)
|
||||
μ_natural_left X Y := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr (Sum.inl x) => rfl
|
||||
| Sum.inr (Sum.inr x) => rfl
|
||||
μ_natural_right X Y := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr (Sum.inl x) => rfl
|
||||
| Sum.inr (Sum.inr x) => rfl
|
||||
associativity X Y Z := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl (Sum.inl x)) => rfl
|
||||
| Sum.inl (Sum.inl (Sum.inr x)) => rfl
|
||||
| Sum.inl (Sum.inr (Sum.inl x)) => rfl
|
||||
| Sum.inl (Sum.inr (Sum.inr x)) => rfl
|
||||
| Sum.inr (Sum.inl x) => rfl
|
||||
| Sum.inr (Sum.inr x) => rfl
|
||||
left_unitality X := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl x => exact Empty.elim x
|
||||
| Sum.inr (Sum.inl x)=> rfl
|
||||
| Sum.inr (Sum.inr x)=> rfl
|
||||
right_unitality X := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun x => by
|
||||
match x with
|
||||
| Sum.inl (Sum.inl x) => rfl
|
||||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr x => exact Empty.elim x
|
||||
|
||||
/-- The monoidal functor from `OverColor C` to `OverColor C × OverColor C` landing on the
|
||||
diagonal. -/
|
||||
def diag (C : Type) : MonoidalFunctor (OverColor C) (OverColor C × OverColor C) :=
|
||||
MonoidalFunctor.diag (OverColor C)
|
||||
|
||||
/-- The constant monoidal functor from `OverColor C` to itself landing on `𝟙_ (OverColor C)`. -/
|
||||
def const (C : Type) : MonoidalFunctor (OverColor C) (OverColor C) where
|
||||
toFunctor := (Functor.const (OverColor C)).obj (𝟙_ (OverColor C))
|
||||
ε := 𝟙 (𝟙_ (OverColor C))
|
||||
μ _ _:= (λ_ (𝟙_ (OverColor C))).hom
|
||||
μ_natural_left _ _ := by
|
||||
simp only [Functor.const_obj_obj, Functor.const_obj_map, MonoidalCategory.whiskerRight_id,
|
||||
Category.id_comp, Iso.hom_inv_id, Category.comp_id]
|
||||
μ_natural_right _ _ := by
|
||||
simp only [Functor.const_obj_obj, Functor.const_obj_map, MonoidalCategory.whiskerLeft_id,
|
||||
Category.id_comp, Category.comp_id]
|
||||
associativity X Y Z := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun i => by
|
||||
match i with
|
||||
| Sum.inl (Sum.inl i) => rfl
|
||||
| Sum.inl (Sum.inr i) => rfl
|
||||
| Sum.inr i => rfl
|
||||
left_unitality X := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun i => by
|
||||
match i with
|
||||
| Sum.inl i => exact Empty.elim i
|
||||
| Sum.inr i => exact Empty.elim i
|
||||
right_unitality X := CategoryTheory.Iso.ext <| Over.OverMorphism.ext <| funext fun i => by
|
||||
match i with
|
||||
| Sum.inl i => exact Empty.elim i
|
||||
| Sum.inr i => exact Empty.elim i
|
||||
|
||||
/-- The monoidal functor from `OverColor C` to `OverColor C` taking `f` to `f ⊗ τ_* f`. -/
|
||||
def contrPair (C : Type) (τ : C → C) : MonoidalFunctor (OverColor C) (OverColor C) :=
|
||||
OverColor.diag C
|
||||
⊗⋙ (MonoidalFunctor.prod (MonoidalFunctor.id (OverColor C)) (OverColor.map τ))
|
||||
⊗⋙ OverColor.tensor C
|
||||
|
||||
end OverColor
|
||||
end IndexNotation
|
174
HepLean/Tensors/OverColor/Iso.lean
Normal file
174
HepLean/Tensors/OverColor/Iso.lean
Normal file
|
@ -0,0 +1,174 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.OverColor.Functors
|
||||
/-!
|
||||
|
||||
## Isomorphisms in the OverColor category
|
||||
|
||||
-/
|
||||
namespace IndexNotation
|
||||
namespace OverColor
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
|
||||
/-!
|
||||
|
||||
## Useful equivalences.
|
||||
|
||||
-/
|
||||
|
||||
/-- The isomorphism between `c : X → C` and `c ∘ e.symm` as objects in `OverColor C` for an
|
||||
equivalence `e`. -/
|
||||
def equivToIso {c : X → C} (e : X ≃ Y) : mk c ≅ mk (c ∘ e.symm) :=
|
||||
Hom.toIso (Over.isoMk e.toIso ((Iso.eq_inv_comp e.toIso).mp rfl))
|
||||
|
||||
/-- Given a map `X ⊕ Y → C`, the isomorphism `mk c ≅ mk (c ∘ Sum.inl) ⊗ mk (c ∘ Sum.inr)`. -/
|
||||
def mkSum (c : X ⊕ Y → C) : mk c ≅ mk (c ∘ Sum.inl) ⊗ mk (c ∘ Sum.inr) :=
|
||||
Hom.toIso (Over.isoMk (Equiv.refl _).toIso (by
|
||||
ext x
|
||||
match x with
|
||||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl))
|
||||
|
||||
/-- The isomorphism between objects in `OverColor C` given equality of maps. -/
|
||||
def mkIso {c1 c2 : X → C} (h : c1 = c2) : mk c1 ≅ mk c2 :=
|
||||
Hom.toIso (Over.isoMk (Equiv.refl _).toIso (by
|
||||
subst h
|
||||
rfl))
|
||||
|
||||
/-- The equivalence between `Fin n.succ` and `Fin 1 ⊕ Fin n` extracting the
|
||||
`i`th component. -/
|
||||
def finExtractOne {n : ℕ} (i : Fin n.succ) : Fin n.succ ≃ Fin 1 ⊕ Fin n :=
|
||||
(finCongr (by omega : n.succ = i + 1 + (n - i))).trans <|
|
||||
finSumFinEquiv.symm.trans <|
|
||||
(Equiv.sumCongr (finSumFinEquiv.symm.trans (Equiv.sumComm (Fin i) (Fin 1)))
|
||||
(Equiv.refl (Fin (n-i)))).trans <|
|
||||
(Equiv.sumAssoc (Fin 1) (Fin i) (Fin (n - i))).trans <|
|
||||
Equiv.sumCongr (Equiv.refl (Fin 1)) (finSumFinEquiv.trans (finCongr (by omega)))
|
||||
|
||||
lemma finExtractOne_symm_inr {n : ℕ} (i : Fin n.succ) :
|
||||
(finExtractOne i).symm ∘ Sum.inr = i.succAbove := by
|
||||
ext x
|
||||
simp only [Nat.succ_eq_add_one, finExtractOne, Function.comp_apply, Equiv.symm_trans_apply,
|
||||
finCongr_symm, Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply,
|
||||
Equiv.coe_refl, Sum.map_inr, finCongr_apply, Fin.coe_cast]
|
||||
change (finSumFinEquiv
|
||||
(Sum.map (⇑(finSumFinEquiv.symm.trans (Equiv.sumComm (Fin ↑i) (Fin 1))).symm) id
|
||||
((Equiv.sumAssoc (Fin 1) (Fin ↑i) (Fin (n - i))).symm
|
||||
(Sum.inr (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)))))).val = _
|
||||
by_cases hi : x.1 < i.1
|
||||
· have h1 : (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)) =
|
||||
Sum.inl ⟨x, hi⟩ := by
|
||||
rw [← finSumFinEquiv_symm_apply_castAdd]
|
||||
apply congrArg
|
||||
ext
|
||||
simp
|
||||
rw [h1]
|
||||
simp only [Nat.succ_eq_add_one, Equiv.sumAssoc_symm_apply_inr_inl, Sum.map_inl,
|
||||
Equiv.symm_trans_apply, Equiv.symm_symm, Equiv.sumComm_symm, Equiv.sumComm_apply,
|
||||
Sum.swap_inr, finSumFinEquiv_apply_left, Fin.castAdd_mk]
|
||||
rw [Fin.succAbove]
|
||||
split
|
||||
· rfl
|
||||
rename_i hn
|
||||
simp_all only [Nat.succ_eq_add_one, not_lt, Fin.le_def, Fin.coe_castSucc, Fin.val_succ,
|
||||
self_eq_add_right, one_ne_zero]
|
||||
omega
|
||||
· have h1 : (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)) =
|
||||
Sum.inr ⟨x - i, by omega⟩ := by
|
||||
rw [← finSumFinEquiv_symm_apply_natAdd]
|
||||
apply congrArg
|
||||
ext
|
||||
simp only [Nat.succ_eq_add_one, Fin.coe_cast, Fin.natAdd_mk]
|
||||
omega
|
||||
rw [h1, Fin.succAbove]
|
||||
split
|
||||
· rename_i hn
|
||||
simp_all [Fin.lt_def]
|
||||
simp only [Nat.succ_eq_add_one, Equiv.sumAssoc_symm_apply_inr_inr, Sum.map_inr, id_eq,
|
||||
finSumFinEquiv_apply_right, Fin.natAdd_mk, Fin.val_succ]
|
||||
omega
|
||||
|
||||
@[simp]
|
||||
lemma finExtractOne_symm_inr_apply {n : ℕ} (i : Fin n.succ) (x : Fin n) :
|
||||
(finExtractOne i).symm (Sum.inr x) = i.succAbove x := calc
|
||||
_ = ((finExtractOne i).symm ∘ Sum.inr) x := rfl
|
||||
_ = i.succAbove x := by rw [finExtractOne_symm_inr]
|
||||
|
||||
@[simp]
|
||||
lemma finExtractOne_symm_inl_apply {n : ℕ} (i : Fin n.succ) :
|
||||
(finExtractOne i).symm (Sum.inl 0) = i := by
|
||||
simp only [Nat.succ_eq_add_one, finExtractOne, Fin.isValue, Equiv.symm_trans_apply, finCongr_symm,
|
||||
Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply, Equiv.coe_refl,
|
||||
Sum.map_inl, id_eq, Equiv.sumAssoc_symm_apply_inl, Equiv.sumComm_symm, Equiv.sumComm_apply,
|
||||
Sum.swap_inl, finSumFinEquiv_apply_right, finSumFinEquiv_apply_left, finCongr_apply]
|
||||
ext
|
||||
rfl
|
||||
|
||||
/-- The equivalence of types `Fin n.succ.succ ≃ (Fin 1 ⊕ Fin 1) ⊕ Fin n` extracting
|
||||
the `i` and `(i.succAbove j)`. -/
|
||||
def finExtractTwo {n : ℕ} (i : Fin n.succ.succ) (j : Fin n.succ) :
|
||||
Fin n.succ.succ ≃ (Fin 1 ⊕ Fin 1) ⊕ Fin n :=
|
||||
(finExtractOne i).trans <|
|
||||
(Equiv.sumCongr (Equiv.refl (Fin 1)) (finExtractOne j)).trans <|
|
||||
(Equiv.sumAssoc (Fin 1) (Fin 1) (Fin n)).symm
|
||||
|
||||
lemma finExtractTwo_symm_inr {n : ℕ} (i : Fin n.succ.succ) (j : Fin n.succ) :
|
||||
(finExtractTwo i j).symm ∘ Sum.inr = i.succAbove ∘ j.succAbove := by
|
||||
rw [finExtractTwo]
|
||||
ext1 x
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma finExtractTwo_symm_inr_apply {n : ℕ} (i : Fin n.succ.succ) (j : Fin n.succ) (x : Fin n) :
|
||||
(finExtractTwo i j).symm (Sum.inr x) = i.succAbove (j.succAbove x) := by
|
||||
rw [finExtractTwo]
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma finExtractTwo_symm_inl_inr_apply {n : ℕ} (i : Fin n.succ.succ) (j : Fin n.succ) :
|
||||
(finExtractTwo i j).symm (Sum.inl (Sum.inr 0)) = i.succAbove j := by
|
||||
rw [finExtractTwo]
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma finExtractTwo_symm_inl_inl_apply {n : ℕ} (i : Fin n.succ.succ) (j : Fin n.succ) :
|
||||
(finExtractTwo i j).symm (Sum.inl (Sum.inl 0)) = i := by
|
||||
rw [finExtractTwo]
|
||||
simp
|
||||
|
||||
/-- The isomorphism between a `Fin 1 ⊕ Fin 1 → C` satisfying the condition
|
||||
`c (Sum.inr 0) = τ (c (Sum.inl 0))`
|
||||
and an object in the image of `contrPair`. -/
|
||||
def contrPairFin1Fin1 (τ : C → C) (c : Fin 1 ⊕ Fin 1 → C)
|
||||
(h : c (Sum.inr 0) = τ (c (Sum.inl 0))) :
|
||||
OverColor.mk c ≅ (contrPair C τ).obj (OverColor.mk (fun (_ : Fin 1) => c (Sum.inl 0))) :=
|
||||
Hom.toIso (Over.isoMk (Equiv.refl _).toIso (by
|
||||
ext x
|
||||
match x with
|
||||
| Sum.inl x =>
|
||||
fin_cases x
|
||||
rfl
|
||||
| Sum.inr x =>
|
||||
fin_cases x
|
||||
change _ = c (Sum.inr 0)
|
||||
rw [h]
|
||||
rfl))
|
||||
|
||||
/-- The Isomorphism between a `Fin n.succ.succ → C` and the product containing an object in the
|
||||
image of `contrPair` based on the given values. -/
|
||||
def contrPairEquiv {n : ℕ} (τ : C → C) (c : Fin n.succ.succ → C) (i : Fin n.succ.succ)
|
||||
(j : Fin n.succ) (h : c (i.succAbove j) = τ (c i)) :
|
||||
OverColor.mk c ≅ ((contrPair C τ).obj (Over.mk (fun (_ : Fin 1) => c i))) ⊗
|
||||
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
|
||||
(equivToIso (finExtractTwo i j)).trans <|
|
||||
(OverColor.mkSum (c ∘ ⇑(finExtractTwo i j).symm)).trans <|
|
||||
tensorIso
|
||||
(contrPairFin1Fin1 τ ((c ∘ ⇑(finExtractTwo i j).symm) ∘ Sum.inl) (by simpa using h)) <|
|
||||
mkIso (by ext x; simp)
|
||||
|
||||
end OverColor
|
||||
end IndexNotation
|
|
@ -3,7 +3,7 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.ColorCat.Basic
|
||||
import HepLean.Tensors.OverColor.Iso
|
||||
import Mathlib.CategoryTheory.Monoidal.NaturalTransformation
|
||||
/-!
|
||||
|
||||
|
@ -13,6 +13,7 @@ import Mathlib.CategoryTheory.Monoidal.NaturalTransformation
|
|||
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
|
||||
/-- The sturcture of a type of tensors e.g. Lorentz tensors, Einstien tensors,
|
||||
complex Lorentz tensors.
|
||||
|
@ -33,9 +34,9 @@ structure TensorStruct where
|
|||
F : MonoidalFunctor (OverColor C) (Rep k G)
|
||||
/-- A map from `C` to `C`. An involution. -/
|
||||
τ : C → C
|
||||
/-- A monoidal natural isomorphism from OverColor.map τ ⊗⋙ F to F.
|
||||
This will allow us to, for example, rise and lower indices. -/
|
||||
dual : (OverColor.map τ ⊗⋙ F) ≅ F
|
||||
/-
|
||||
μContr : OverColor.contrPair C τ ⊗⋙ F ⟶ OverColor.const C ⊗⋙ F
|
||||
dual : (OverColor.map τ ⊗⋙ F) ≅ F-/
|
||||
/-- A specification of the dimension of each color in C. This will be used for explicit
|
||||
evaluation of tensors. -/
|
||||
evalNo : C → ℕ
|
||||
|
@ -63,7 +64,8 @@ inductive TensorTree (S : TensorStruct) : ∀ {n : ℕ}, (Fin n → S.C) → Typ
|
|||
(i : Fin n.succ) → (j : Fin m.succ) → TensorTree S c → TensorTree S c1 →
|
||||
TensorTree S (Sum.elim (c ∘ Fin.succAbove i) (c1 ∘ Fin.succAbove j) ∘ finSumFinEquiv.symm)
|
||||
| contr {n : ℕ} {c : Fin n.succ.succ → S.C} : (i : Fin n.succ.succ) →
|
||||
(j : Fin n.succ) → TensorTree S c → TensorTree S (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
|
||||
(j : Fin n.succ) → (h : c (i.succAbove j) = S.τ (c i)) → TensorTree S c →
|
||||
TensorTree S (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
|
||||
| jiggle {n : ℕ} {c : Fin n → S.C} : (i : Fin n) → TensorTree S c →
|
||||
TensorTree S (Function.update c i (S.τ (c i)))
|
||||
| eval {n : ℕ} {c : Fin n.succ → S.C} :
|
||||
|
@ -85,7 +87,7 @@ def size : ∀ {n : ℕ} {c : Fin n → S.C}, TensorTree S c → ℕ := fun
|
|||
| smul _ t => t.size + 1
|
||||
| prod t1 t2 => t1.size + t2.size + 1
|
||||
| mult _ _ t1 t2 => t1.size + t2.size + 1
|
||||
| contr _ _ t => t.size + 1
|
||||
| contr _ _ _ t => t.size + 1
|
||||
| jiggle _ t => t.size + 1
|
||||
| eval _ _ t => t.size + 1
|
||||
|
||||
|
|
|
@ -53,7 +53,7 @@ def dotString (m : ℕ) (nt : ℕ) : ∀ {n : ℕ} {c : Fin n → S.C}, TensorTr
|
|||
let jiggleNode := " node" ++ toString m ++ " [label=\"τ\", shape=box];\n"
|
||||
let edge1 := " node" ++ toString m ++ " -> node" ++ toString (m + 1) ++ ";\n"
|
||||
jiggleNode ++ dotString (m + 1) nt t1 ++ edge1
|
||||
| contr i j t1 =>
|
||||
| contr i j _ t1 =>
|
||||
let contrNode := " node" ++ toString m ++ " [label=\"contr " ++ toString i ++ " "
|
||||
++ toString j ++ "\", shape=box];\n"
|
||||
let edge1 := " node" ++ toString m ++ " -> node" ++ toString (m + 1) ++ ";\n"
|
||||
|
|
|
@ -192,7 +192,7 @@ def withoutContr (stx : Syntax) : TermElabM (List (TSyntax `indexExpr)) := do
|
|||
/-- For each element of `l : List (ℕ × ℕ)` applies `TensorTree.contr` to the given term. -/
|
||||
def contrSyntax (l : List (ℕ × ℕ)) (T : Term) : Term :=
|
||||
l.foldl (fun T' (x0, x1) => Syntax.mkApp (mkIdent ``TensorTree.contr)
|
||||
#[Syntax.mkNumLit (toString x1), Syntax.mkNumLit (toString x0), T']) T
|
||||
#[Syntax.mkNumLit (toString x1), Syntax.mkNumLit (toString x0), mkIdent ``rfl, T']) T
|
||||
|
||||
/-- Creates the syntax associated with a tensor node. -/
|
||||
def syntaxFull (stx : Syntax) : TermElabM Term := do
|
||||
|
@ -256,7 +256,7 @@ def withoutContr (stx : Syntax) : TermElabM (List (TSyntax `indexExpr)) := do
|
|||
/-- For each element of `l : List (ℕ × ℕ)` applies `TensorTree.contr` to the given term. -/
|
||||
def contrSyntax (l : List (ℕ × ℕ)) (T : Term) : Term :=
|
||||
l.foldl (fun T' (x0, x1) => Syntax.mkApp (mkIdent ``TensorTree.contr)
|
||||
#[Syntax.mkNumLit (toString x1), Syntax.mkNumLit (toString x0), T']) T
|
||||
#[Syntax.mkNumLit (toString x1), Syntax.mkNumLit (toString x0), mkIdent ``rfl, T']) T
|
||||
|
||||
/-- The syntax associated with a product of tensors. -/
|
||||
def prodSyntax (T1 T2 : Term) : Term :=
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue