refactor: Lint
This commit is contained in:
parent
e710c9278e
commit
12a568b45f
5 changed files with 44 additions and 13 deletions
|
@ -6,7 +6,13 @@ Authors: Joseph Tooby-Smith
|
|||
import HepLean.AnomalyCancellation.SMNu.PlusU1.Basic
|
||||
import HepLean.AnomalyCancellation.SMNu.PlusU1.FamilyMaps
|
||||
import HepLean.AnomalyCancellation.SMNu.PlusU1.PlaneNonSols
|
||||
/-!
|
||||
# Bound on plane dimension
|
||||
|
||||
We place an upper bound on the dimension of a plane of charges on which every point is a solution.
|
||||
The upper bound is 7, proven in the theorem `plane_exists_dim_le_7`.
|
||||
|
||||
-/
|
||||
universe v u
|
||||
|
||||
namespace SMRHN
|
||||
|
@ -16,6 +22,8 @@ open SMνCharges
|
|||
open SMνACCs
|
||||
open BigOperators
|
||||
|
||||
/-- A proposition which is true if for a given `n` a plane of charges of dimension `n` exists
|
||||
in which each point is a solution. -/
|
||||
def existsPlane (n : ℕ) : Prop := ∃ (B : Fin n → (PlusU1 3).charges),
|
||||
LinearIndependent ℚ B ∧ ∀ (f : Fin n → ℚ), (PlusU1 3).isSolution (∑ i, f i • B i)
|
||||
|
||||
|
@ -33,7 +41,7 @@ lemma exists_plane_exists_basis {n : ℕ} (hE : existsPlane n) :
|
|||
have h1 : ∑ x : Fin n, -(g (Sum.inr x) • Y (Sum.inr x)) =
|
||||
∑ x : Fin n, (-g (Sum.inr x)) • Y (Sum.inr x):= by
|
||||
apply Finset.sum_congr
|
||||
simp
|
||||
simp only
|
||||
intro i _
|
||||
simp
|
||||
rw [h1] at hg
|
||||
|
|
|
@ -26,28 +26,40 @@ open BigOperators
|
|||
|
||||
namespace ElevenPlane
|
||||
|
||||
/-- A charge assignment forming one of the basis elements of the plane. -/
|
||||
def B₀ : (PlusU1 3).charges := ![1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
||||
|
||||
/-- A charge assignment forming one of the basis elements of the plane. -/
|
||||
def B₁ : (PlusU1 3).charges := ![0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
||||
|
||||
/-- A charge assignment forming one of the basis elements of the plane. -/
|
||||
def B₂ : (PlusU1 3).charges := ![0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
||||
|
||||
/-- A charge assignment forming one of the basis elements of the plane. -/
|
||||
def B₃ : (PlusU1 3).charges := ![0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
||||
|
||||
/-- A charge assignment forming one of the basis elements of the plane. -/
|
||||
def B₄ : (PlusU1 3).charges := ![0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
||||
|
||||
/-- A charge assignment forming one of the basis elements of the plane. -/
|
||||
def B₅ : (PlusU1 3).charges := ![0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
||||
|
||||
/-- A charge assignment forming one of the basis elements of the plane. -/
|
||||
def B₆ : (PlusU1 3).charges := ![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
|
||||
|
||||
/-- A charge assignment forming one of the basis elements of the plane. -/
|
||||
def B₇ : (PlusU1 3).charges := ![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
|
||||
|
||||
/-- A charge assignment forming one of the basis elements of the plane. -/
|
||||
def B₈ : (PlusU1 3).charges := ![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
|
||||
|
||||
/-- A charge assignment forming one of the basis elements of the plane. -/
|
||||
def B₉ : (PlusU1 3).charges := ![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0]
|
||||
|
||||
/-- A charge assignment forming one of the basis elements of the plane. -/
|
||||
def B₁₀ : (PlusU1 3).charges := ![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
|
||||
|
||||
/-- The charge assignment forming a basis of the plane. -/
|
||||
def B : Fin 11 → (PlusU1 3).charges := fun i =>
|
||||
match i with
|
||||
| 0 => B₀
|
||||
|
@ -76,7 +88,7 @@ lemma Bi_sum_quad (i : Fin 11) (f : Fin 11 → ℚ) :
|
|||
rw [quadBiLin.map_smul₂, Bi_Bj_quad hij.symm]
|
||||
simp
|
||||
|
||||
|
||||
/-- The coefficents of the quadratic equation in our basis. -/
|
||||
@[simp]
|
||||
def quadCoeff : Fin 11 → ℚ := ![1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]
|
||||
|
||||
|
@ -102,7 +114,7 @@ lemma isSolution_quadCoeff_f_sq_zero (f : Fin 11 → ℚ) (hS : (PlusU1 3).isSol
|
|||
rw [Fintype.sum_eq_zero_iff_of_nonneg] at hQ
|
||||
exact congrFun hQ k
|
||||
intro i
|
||||
simp
|
||||
simp only [Pi.zero_apply, quadCoeff]
|
||||
rw [mul_nonneg_iff]
|
||||
apply Or.inl
|
||||
apply And.intro
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue