Merge pull request #101 from HEPLean/Tensors-V2

feat: Add vecAsTensor
This commit is contained in:
Joseph Tooby-Smith 2024-07-30 10:29:23 -04:00 committed by GitHub
commit 12ca7afb49
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 60 additions and 2 deletions

View file

@ -34,7 +34,7 @@ open TensorProduct
variable {R : Type} [CommSemiring R]
/-- An auxillary function to contract the vector space `V1` and `V2` in `V1 ⊗[R] V2 ⊗[R] V3`. -/
/-- An auxillary function to contract the vector space `V1` and `V2` in `V1 ⊗[R] V2 ⊗[R] V3`. -/
def contrDualLeftAux {V1 V2 V3 : Type} [AddCommMonoid V1] [AddCommMonoid V2] [AddCommMonoid V3]
[Module R V1] [Module R V2] [Module R V3] (f : V1 ⊗[R] V2 →ₗ[R] R) :
V1 ⊗[R] V2 ⊗[R] V3 →ₗ[R] V3 :=

View file

@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzTensor.Basic
import HepLean.SpaceTime.LorentzTensor.MulActionTensor
/-!
# Lorentz tensors indexed by Fin n
@ -35,6 +36,11 @@ variable {d : } {X Y Y' Z W : Type} [Fintype X] [DecidableEq X] [Fintype Y] [
{cW : W → 𝓣.Color} {cY' : Y' → 𝓣.Color} {μ ν: 𝓣.Color}
{cn : Fin n → 𝓣.Color} {cm : Fin m → 𝓣.Color}
variable {G H : Type} [Group G] [Group H] [MulActionTensor G 𝓣]
local infixl:101 " • " => 𝓣.rep
open MulActionTensor
/-- Casting a tensor defined on `Fin n` to `Fin m` where `n = m`. -/
@[simp]
def finCast (h : n = m) (hc : cn = cm ∘ Fin.castOrderIso h) : 𝓣.Tensor cn ≃ₗ[R] 𝓣.Tensor cm :=
@ -47,6 +53,58 @@ def finSumEquiv : 𝓣.Tensor cn ⊗[R] 𝓣.Tensor cm ≃ₗ[R]
𝓣.Tensor (Sum.elim cn cm ∘ finSumFinEquiv.symm) :=
(𝓣.tensoratorEquiv cn cm).trans (𝓣.mapIso finSumFinEquiv (by funext a; simp))
/-!
## Vectors as tensors & singletons
-/
/-- Tensors on `Fin 1` are equivalent to a constant Pi tensor product. -/
def tensorSingeletonEquiv : 𝓣.Tensor ![μ] ≃ₗ[R] ⨂[R] _ : (Fin 1), 𝓣.ColorModule μ := by
refine LinearEquiv.ofLinear (PiTensorProduct.map (fun i =>
match i with
| 0 => LinearMap.id)) (PiTensorProduct.map (fun i =>
match i with
| 0 => LinearMap.id)) ?_ ?_
all_goals
apply LinearMap.ext
refine fun x ↦
PiTensorProduct.induction_on' x ?_ (by
intro a b hx a
simp_all only [Nat.succ_eq_add_one, Matrix.cons_val_zero, LinearMap.coe_comp,
Function.comp_apply, LinearMap.id_coe, id_eq, map_add])
intro r x
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Matrix.cons_val_zero,
PiTensorProduct.tprodCoeff_eq_smul_tprod, LinearMapClass.map_smul, LinearMap.coe_comp,
Function.comp_apply, LinearMap.id_coe, id_eq]
change r •
(PiTensorProduct.map _) ((PiTensorProduct.map _) ((PiTensorProduct.tprod R) x)) = _
rw [PiTensorProduct.map_tprod, PiTensorProduct.map_tprod]
repeat apply congrArg
funext i
fin_cases i
rfl
/-- An equivalence between the `ColorModule` for a color and a `Fin 1` tensor with that color. -/
def vecAsTensor : 𝓣.ColorModule μ ≃ₗ[R] 𝓣.Tensor ![μ] :=
((PiTensorProduct.subsingletonEquiv 0).symm : _ ≃ₗ[R] ⨂[R] _ : (Fin 1), 𝓣.ColorModule μ)
≪≫ₗ 𝓣.tensorSingeletonEquiv.symm
/-- The equivalence `vecAsTensor` is equivariant with respect to `MulActionTensor`-actions. -/
@[simp]
lemma vecAsTensor_equivariant (g : G) (v : 𝓣.ColorModule μ) :
𝓣.vecAsTensor (repColorModule μ g v) = g • 𝓣.vecAsTensor v := by
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, vecAsTensor, Fin.isValue, tensorSingeletonEquiv,
Matrix.cons_val_zero, LinearEquiv.trans_apply, PiTensorProduct.subsingletonEquiv_symm_apply,
LinearEquiv.ofLinear_symm_apply]
change (PiTensorProduct.map _) ((PiTensorProduct.tprod R) _) =
(𝓣.rep g) ((PiTensorProduct.map _) ((PiTensorProduct.tprod R) fun _ => v))
rw [PiTensorProduct.map_tprod, PiTensorProduct.map_tprod, rep_tprod]
apply congrArg
funext i
fin_cases i
rfl
end TensorStructure
end

View file

@ -87,7 +87,7 @@ def rep : Representation R G (𝓣.Tensor cX) where
simp_all only [_root_.map_mul]
exact PiTensorProduct.map_mul _ _
local infixl:78 " • " => 𝓣.rep
local infixl:101 " • " => 𝓣.rep
lemma repColorModule_colorModuleCast_apply (h : μ = ν) (g : G) (x : 𝓣.ColorModule μ) :
(repColorModule ν g) (𝓣.colorModuleCast h x) =